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Abstract – We consider the problem of estimating causal influences between observed processes
from time series possibly corrupted by errors in the time variable (dating errors) which are typical
in palaeoclimatology, planetary science and astrophysics. “Causality ratio” based on the Wiener-
Granger causality is proposed and studied for a paradigmatic class of model systems to reveal
conditions under which it correctly indicates directionality of unidirectional coupling. It is argued
that in the case of a priori known directionality, the causality ratio allows a characterization of
dating errors and observational noise. Finally, we apply the developed approach to palaeoclimatic
data and quantify the influence of solar activity on tropical Atlantic climate dynamics over the
last two millennia. A stronger solar influence in the first millennium A.D. is inferred. The results
also suggest a dating error of about 20 years in the solar proxy time series over the same period.

Copyright c⃝ EPLA, 2017

Introduction. – Revealing cause-and-effect relation-
ships between observed processes at various time scales
is an important step in understanding many physical,
biological, physiological and geophysical systems [1–8].
Frequently, this issue must be addressed with rather lim-
ited knowledge about the systems under study, amounts
of observational data, and dating accuracy. A general ap-
proach to detect and quantify causal couplings, i.e., to
find out “who drives whom”, is the Wiener-Granger (WG)
causality [9,10]. In its simplest version, the idea is to
check whether a present value of one process (X) can
be predicted more accurately using the past of a sec-
ond process (Y ) in comparison with predictions based
solely on the past of X . In fact, this concept gener-
alizes a conditional (partial) cross-correlation [11] and
has been followed by a number of elaborations such
as information-theoretic measures [3,12–15] and vari-
ous nonlinear approximations [16]. Despite some limita-
tions and obstacles [17–20], the WG causality appears
quite useful in practice, allowing meaningful dynamical
interpretations [21,22] and becoming increasingly widely

used in different fields, such as biomedicine [1,5,8] and
geophysics [6].

Causal coupling estimation is also of great value in
climate science, where temporal changes of climatically
sensitive proxies [23] are the main source of information
about past climate dynamics over long time intervals. The
stalagmite YOK-I from the Yok Balum Cave in South-
ern Belize is especially well dated [24] and provides a
high-resolution reconstruction of low-latitudinal Atlantic
moisture variations [25]. Making use of solar irradiance
reconstructions (e.g., [26]), one can ask “How do varia-
tions in solar activity affect regional Atlantic climate?”.
Answering this question helps further delineate the time-
variant processes that drive climate variations. However,
this question leads directly to the main difficulty with such
data: dating accuracy of the reconstructions used. Uncer-
tainties inherent in sampling and dating methods limit our
knowledge of the time instant of each proxy observation,
so that temporal ordering of the observations from the
two time series may be distorted uniformly or irregularly
in the course of time. This makes any application of the
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WG causality approach questionable, which essentially re-
quires a clear distinction between the future and the past.

In this letter, we propose a solution with an appropri-
ate specification of the problem setting and adaptation of
the WG causality characteristics. We consider a situation
where it is known in advance that the coupling between
two processes underlying the observed time series is unidi-
rectional, and the problem reduces to identifying the cou-
pling directionality. Observational noise and dating errors
may strongly affect the results of any coupling analysis.
In particular, the usual cross-correlation function (CCF)
is obviously insufficient since even a uniform dating error
moves the location of the CCF maximum along the time
axis, so that “lead-lag” information is lost. We note, how-
ever, that the WG causality approach provides two cou-
pling characteristics corresponding to the two directions
X → Y and Y → X , which is a richer characterization
than a single CCF value. To make the WG causality work
in the case of dating errors, we suggest its modification in-
volving the definition of the causality ratio rY →X which is
the ratio of maximized time-lagged truncated WG causal-
ities in the directions Y → X and X → Y . We argue that
if a coupling indeed exists in the direction Y → X , then
under certain conditions rY →X > 1, i.e., the causality
ratio is an indicator of the coupling directionality.

We study the conditions under which this causality
ratio allows us to extract information on directionality
of unidirectional coupling or, knowing the directional-
ity, to characterize dating errors and observational noise
in the analyzed time series. As for the latter task, the
mentioned palaeoclimate problem is a relevant example
where coupling is unidirectional from solar activity vari-
ations to regional climate (reflected in proxy reconstruc-
tions), while dating errors and observational noise in the
proxy signals remain largely unknown. Here, we i) de-
termine the causality ratio for a class of model systems
exactly, ii) analyze statistical properties of its estima-
tor in numerical simulations, and iii) apply the approach
to palaeoclimate data using the two records mentioned
above to assess their dating accuracy and quantify the
time-variant influence of solar activity on the tropical At-
lantic climate. Further details of the method and addi-
tional results are given in the Supplementary Material
Supplementarymaterial.pdf (SM).

Wiener-Granger causality. – Let (X(t), Y (t)) be
a bivariate random process with realizations (x(t), y(t)).
Denote xn = x(tn), yn = y(tn), where tn = nh,
n ∈ Z, and h is the sampling interval. Consider the
self-predictor xind

n = E[X(tn)|xn−1, xn−2, . . . ] where the
expectation E[·|·] is conditioned on the infinite past
{xn−1, xn−2, . . . }. Its mean-squared error is σ2

X,ind =

E[(X(tn) − xind
n )2], where the expectation is taken over

all xn and all {xn−1, xn−2, . . . }. This error is the least
over all self-predictors for X . The joint predictor xjoint

n =
E[X(tn)|xn−1, yn−1, xn−2, yn−2, . . . ] gives the least er-
ror σ2

X,joint over all joint predictors. The prediction

improvement (PI) GY →X = (σ2
X,ind − σ2

X,joint)/σ2
X,ind is

a measure of WG causality in the direction Y → X . Ev-
erything is analogous for the direction X → Y .

The WG idea was first realized for stationary Gaussian
processes [10]. Then, when estimating GY →X from a finite
time series {xn, yn}N

n=1, one truncates the (conditioning)
infinite pasts at finite numbers of terms lX and lXY and
fits univariate and bivariate linear autoregressive models
of the orders lX and (lX , lXY ) to the data via the ordi-
nary least-squares technique. In other words, one uses
the predictors xind

n,lX
= E[Xn|xn−1, xn−2, . . . , xn−lX ] and

xjoint
n,lX ,lXY

= E[Xn|xn−1, . . . , xn−lX , yn−1, . . . , yn−lXY
] and

gets the truncated WG causality Gtr
Y →X . The latter is of-

ten a good approximation of GY →X even at small lX and
lXY . The model orders can be selected via the Schwarz
criterion [27] and statistical significance can be checked
via Fisher’s F -test [28].

Causality ratio. – Consider a more general setting
with the original processes X0 and Y0, whose observed
versions X and Y are distorted along two lines. First,
due to an amplitude noise: X(t) = X0(t) + Ξ(t) and
Y (t) = Y0(t)+Ψ(t), where Ξ(t) and Ψ(t) are independent
observational noises with variances σ2

Ξ and σ2
Ψ, whose dis-

crete time realizations ξn and ψn are white noises. Second,
due to time uncertainty, genuine (a priori unknown) ob-
servation instants tXn and tYn deviate from the supposed
regular equidistant series tn = nh: xn = x(tXn ) + ξn and
yn = y(tYn ) + ψn with tXn + δX

n = nh and tYn + δY
n = nh,

where δX
n and δY

n stay for the time axis (i.e., dating)
errors. The latter may be rapidly fluctuating or slowly
varying and may be defined either as random processes
or deterministic functions of time. To account for the
dating errors and retain sensitivity to coupling, we use
the time-lagged WG causality: namely, Gtr

Y →X(∆) is de-
fined as prediction improvement of xn when using the seg-
ment {yn−∆/h, . . . , yn−(lXY −1)−∆/h}. Then, we suggest
to determine its maximum over an interval of positive
and negative time lags of some width 2∆m: Gtr,max

Y →X =
max

−∆m≤∆≤∆m

Gtr
Y →X(∆). Analogously we define Gtr,max

X→Y .

Finally, the causality ratio in the direction Y → X reads

rY →X =
Gtr,max

Y →X

Gtr,max
X→Y

. (1)

Obviously, rX→Y = 1/rY →X . The value of ∆m should be
chosen so as to exceed a maximal possible dating error to
avoid missing the maximal PIs. If, moreover, the coupling
is time-delayed, locations of the PIs maxima are shifted
along the ∆-axis by the value of this delay. Hence, if
one expects a time delay, then the value of ∆m should be
selected so as to exceed the sum of the absolute values of
the coupling delay and the dating error.

We conjecture that for unidirectional coupling Y → X
and similar individual characteristics of the processes X
and Y , the ratio rY →X is considerably greater than unity.
However, dating errors and observational noise along with
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estimates fluctuations due to shortness of time series may
somewhat decrease rY →X , which is studied below.

Model system. – Since the value of rY →X may de-
pend on many features of the processes under study (such
as characteristic times and sampling interval) and param-
eters of the estimation technique (such as lX), we need to
choose a reasonably simple system and a narrow range of
the parameters for which the causality ratio can be stud-
ied in detail. As such a testing system, we use coupled
“relaxators” (first-order decay processes):

dX0/dt = −αX0(t) + kY0(t) + ζX(t),
dY0/dt = −αY0(t) + ζY (t),

(2)

where α determines the characteristic relaxation time
τ = 1/α, k is the coupling coefficient, and ζX and ζY are
independent zero-mean white noises with autocorrelation
functions E[ζX(t1)ζX(t2)] = E[ζY (t1)ζY (t2)] = δ(t1 − t2),
where δ is Dirac’s delta. Equations (2) represent a sim-
ple, but basic class of systems which still exhibit irregular
temporal behavior and are often encountered in different
fields (e.g., [29]). The squared zero-lag CCF reads here
C2

X0Y0,0 = (β/4)/(1 + β/2) where β = k2/α2 is a non-
dimensional coupling strength. C2

X0Y0,0 ranges from 0 (for
k = 0) to 0.5 (for k → ∞) and can be used to parameter-
ize the coupling strength as well. The sampling rate can
be conveniently characterised by the ratio h/τ .

For system (2) it appears possible to confine ourselves
with the orders lX = lXY = lY = lY X = 1. It can be
argued that Gtr

Y →X(∆) obtained at lX = lXY = 1 is close
to Gtr

Y →X(∆) obtained at lX = ∞ and lXY = 1, if the
sampling interval h is not too small (e.g., ≥ 0.2τ) [21]. In
numerical simulations here, we also find that the results
for Gtr

Y →X(∆) with lX = 1 are close to those obtained with
lX selected via the Schwarz criterion (difference of the or-
der of 1%). Similar arguments hold for lXY . Then, the
quantity Gtr

Y →X(∆) can be expressed via the autocorrela-
tion function (ACF) CXX(h) and the CCF CXY (∆) and
CXY (∆−h) ([20] and SM). Having found ACFs and CCF
analytically, we compute the time-lagged truncated WG
causalities vs. ∆ and select their maxima to calculate the
causality ratio. Such a precise analysis is performed for
various coupling coefficient values, sampling intervals, ob-
servational noise and dating error levels, while statistical
properties of the causality ratio estimator are investigated
in numerical simulations. We check if indeed rY →X > 1
and assess how small rY →X can be at all. A closer atten-
tion is paid to cases with 0.1 ≤ C2

XY,max ≤ 0.2 and WG

causalities 0.01 ≤ Gtr,max
Y →X ≤ 0.03 which are reminiscent of

those often observed in climate data analysis in cases of
statistically significant coupling detection (e.g., [30] and
the palaeoclimate example below).

Exact study of possible causality ratio values. –

Before considering the central point of dating errors iden-
tification, it is necessary to study the case of undistorted
observations X = X0 and Y = Y0. For the most practically

interesting situations of not too sparse sampling (e.g.,
h ≤ 0.2τ), rY →X is well above unity, confidently indi-
cating the correct coupling direction. Namely, rY →X =
1.6 for h = 0.2τ and a moderately strong coupling of
C2

X0Y0,0 = 0.1. For rather sparse samplings of h ≥ τ , the
ratio rY →X gets close to unity and, hence, cannot reliably
reveal coupling directionality. This is similar for any cou-
pling strength: in particular, at h/τ = 0.2 the causality
ratio remains almost constant (rY →X ≈ 1.6) in the wide
range of 0 < C2

XY,0 < 0.3. For stronger couplings, rY →X

becomes even greater, up to ≈ 3 at C2
XY,0 = 0.5. Thus,

if the sampling is not too sparse, rY →X correctly detects
coupling directionality. More details are given in the SM.

Though there can be different types of dating errors,
their basic effect can be studied on a simple example
where dating errors equal a constant temporal shift half
the time (e.g., for an older half of a palaeoclimate record
where accurate dating is more difficult) and zero other-
wise. Regardless of which signal is erroneously dated,
only the relative dating errors matter in causality esti-
mation. For definiteness, we introduce the dating errors
only into the driving signal: δY

n = const = δY half-time
(for n = 1, . . . , N/2) and δY

n = 0 otherwise (for n = N/2+
1, . . . , N). The “average CCF” of such a non-stationary
process (X, Y ) can be defined as the expectation of the
sample CCF computed over the entire time span and
equals an arithmetic mean of the CCFs for the two sta-
tionary halves. The usual WG causalities defined for the
entire time span are expressed via such an average CCF
in the same way as before. Figures 1(a), (b) show that
the shape of the plots for the time-lagged WG causalities
and locations of their maxima change strongly when the
dating error becomes comparable with the relaxation time
τ . Then, the “correct” Gtr,max

Y →X decreases by almost two
times as compared to zero dating error, while the opposite
Gtr,max

X→Y decreases only by 1.5 times. At that, the causality
ratio becomes close to unity and may even fall down to 0.9
for the dating error greater than τ . If a smaller or a larger
portion of a time series suffers from a uniform dating error,
then the effect of the latter on the causality ratio and the
respective distortions of the plots Gtr

Y →X(∆) are weaker
(see SM), in particular, they vanish if the entire time se-
ries is characterized with a uniform dating error since the
causality ratio involves maximization over temporal shifts.

Principally, dating errors may be distributed in a com-
plicated manner determined both by random walk-like
stochastic contribution, analytical limitations and global
contribution induced by incorrect tie points as, e.g., er-
roneous attribution of volcanic eruption dates due to in-
correct identification of individual eruptions [31]. Still, we
have obtained results very similar to fig. 1 for dating er-
rors linearly increasing with age, even with a superimposed
random-walk component whose values become of the order
of τ for ages of the order of 100τ as motivated by palaeocli-
mate applications. Thus, the described effect of the dating
errors is robust, being observed just for reasonably large
dating errors without any other specific conditions.
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Fig. 1: (Colour online) Causality measures depending on dat-
ing error δY for the system (2) at h/τ = 0.2 and σ2

Ξ = σ2
Ψ = 0,

k/α is such that C2
X0Y0,0 = 0.1, lX = lXY = lY = lY X = 1:

((a), (b)) truncated WG causalities vs. time lag for different
dating errors; (c) maximal truncated WG causalities (blue and
green) and maximum CCF value (black) and (d) causality ratio
vs. δY .

When dating errors are present, it is natural to expect
also an observational noise. Let us first show how the lat-
ter affects the causality ratio for zero dating errors. It
appears that the noise Ψ in the driving signal can sig-
nificantly decrease rY →X . Thus, at moderate h/τ = 0.2,
C2

X0Y0,0 = 0.1 and σ2
Ξ = 0, the “correct” Gtr,max

Y →X decreases

with σ2
Ψ faster than Gtr,max

X→Y so that rY →X approaches
unity at σ2

Ψ/σ2
Y0

> 0.5 (fig. 2). However, the noise Ξ in
the driven signal increases rY →X apart from unity, which
becomes quite visible as soon as σ2

Ξ/σ2
X0

exceeds just 0.1.
To summarize, large values of σ2

Ψ/σ2
Y0

(50% and greater)
along with small σ2

Ξ/σ2
X0

(less than 10%) at moderate cou-
pling strengths make the ratio rY →X close to unity. Hence,
such a specific combination of noise levels can complicate
inference of coupling direction from rY →X .

To distinguish between impacts of observational noise
and dating error from data, we can use either i) assump-
tions about possible levels of both factors or ii) shapes
of the plots Gtr(∆). For example, i) if the noise is
hardly greater than 20% in terms of variance, then
rY →X < 1.1 may be induced only by a dating error
greater than τ/2 (figs. 2(c), (d)); ii) if shapes of the plots
Gtr

Y →X(∆) and Gtr
X→Y (∆) strongly differ from each other

(cf. figs. 1(a), (b) and 2(a), (b)), this is a sign of dating
errors rather than observational noise. Being based on ex-
act values of the causality ratio, such considerations are
valid only for long enough time series, where statistical
fluctuations can be neglected.

Note of causality ratio estimation. – Much smaller
causality ratio estimates (e.g., 0.5) could appear in prac-
tice either due to a violation of eq. (2) or too short time
series. To give an analytic guess for possible statisti-
cal fluctuations of time series-based estimates, we note
that the estimator (N/lXY )Ĝtr

Y →X(∆) for sufficiently large
N roughly follows χ2 distribution with lXY degrees of

Fig. 2: (Colour online) Causality measures depending on ob-
servational noise level σ2

Ψ for the system (2) at h/τ = 0.2,
σ2

Ξ = 0, δY = 0, C2
X0Y0,0 = 0.1, and lX = lXY = lY = lY X = 1:

((a), (b)) truncated WG causalities vs. time lag for different
noise levels; (c) maximal truncated WG causalities (blue and
green) and maximal CCF value (black) and (d) causality ratio
vs. σ2

Ψ/σ2
Y0

.

freedom, so the amplitude of its deviations from the mean
for lXY = 1 equals 3/N (the latter is the distance from
0.95-quantile to the mean) [28]. After maximization over
a reasonable interval of the width 2∆m = 4τ , the differ-
ence δĜ = Ĝtr,max

Y →X (∆) − Ĝtr,max
X→Y (∆) for lXY = lY X = 1

fluctuates with an amplitude of (3/N)
√

4 · 2 ≈ 9/N . De-
note the expectation of this difference δG. Then, δĜ and
hence the estimator r̂Y →X = Ĝtr,max

Y →X /Ĝtr,max
X→Y are slightly

affected by statistical fluctuations if the time series length
is N ≫ 9/δG. Hence, for a typical δĜ ≈ 0.01 (as in
the following example) one should require N ≫ 900. If
a time series is shorter, the role of statistical fluctuations
may well appear strong. For a detailed numerical study of
such small sample effects, let us focus on situations close to
the properties of the palaeoclimate data analyzed below.

Causality estimates from palaeoclimate data. –
A key problem in climate sciences is to understand and
evaluate relative contributions of different factors to ob-
served global and regional climate variations over time
scales on the order of decades and longer. The best
sources of such information from the pre-instrumental era
are palaeoclimate proxies from different natural archives.
One well-dated high-resolution reconstruction has been
extracted from the stalagmite YOK-I from Yok Balum
Cave (Southern Belize) [25]. The δ18O record represents
local to regional hydroclimate variations in that Atlantic
region over the last two millennia with a mean temporal
resolution of half a year and is characterized by very low
dating errors (up to 17 y for ages about 2000 y). This time
series (x signal) is examined here in parallel with the re-
construction of the total solar irradiance (TSI) based on
10Be measurements on ice cores [26] to extract information
on a possible influence of solar activity (y signal) on the
Belize climate over the last two millennia.
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Fig. 3: (Colour online)Estimation from palaeoclimate data over
the period (15 y B.C.–2010 y A.D.): (a) time series of δ18O
from a speleothem representing local climate (moisture) in the
Atlantic region, red points denote the original data, the blue
line the smoothed signal; (b) time series of solar activity (to-
tal solar irradiance); (c) sample ACF for the signals x (blue)
and y (green); (d) sample CCF; (e) truncated WG causali-
ties in the directions TSI → Belize climate (blue) and Be-
lize climate → TSI (green) for lX = 3, lXY = 1, lY = 4,
lY X = 1; (f) the respective pointwise p-levels for the positiv-
ity of Ĝtr

Y →X (blue) and Ĝtr
X→Y (green), black dashed lines

show the pointwisep-levels corresponding to the total p-level
of 0.05 and obtained via the Bonferroni correction [32] with a
pre-defined order of tests.

The time series are presented in figs. 3(a), (b). The TSI
data (fig. 3(b)) have originally been processed to remove
the 11 y solar cycle [26] and sampled in steps of h = 5 y.
The original, non-equidistantly sampled YOK-I δ18O val-
ues are shown as red dots in fig. 3(a), the blue line shows
the Gaussian kernel-based filtered [33] record (efficient
width of 5 y) sampled equidistantly in smaller steps of 1 y.
The sample ACFs of both signals (fig. 3(c)) and their CCF
(fig. 3(d), Ĉ2

XY,max = 0.09) agree reasonably well with the
hypothesis of the relaxators (2) with τ ≈ 25 y; some devi-
ations may be attributed to statistical fluctuations. The
resulting time series length is N = 400: the signal dura-
tion is 80τ , the sampling interval is 0.2τ .

To focus on the most statistically reliable results, we
use the model orders selected via the Schwarz criterion
for these data (lX = 3 and lY = 4), even though every-
thing is similar for the unit orders. The WG causality
estimates differ from zero at least at the level of 0.05:
Ĝtr,max

Y →X = 0.014 and Ĝtr,max
X→Y = 0.025 (figs. 3(e), (f)).

Since Ĝtr
Y →X(∆) for the direction TSI → Belize climate

is maximal at negative time lag ∆ instead of an ex-
pected non-negative lag, a possible dating error can be

assumed. It is surprising that the causality ratio from TSI
to Belize climate is r̂Y →X = 0.56, though we would expect
much greater rY →X > 1.5 without observational noise
and dating errors and rY →X > 0.9 with those distortions
(figs. 1, 2). Below, we study causality estimators for the
same time series length and other parameters and check if
statistical fluctuations suffice to explain such a low r̂Y →X .

Causality estimates from short time series. –

Taking N = 400 and h/τ = 0.2, we generated an ensemble
of 1000 time series by integrating eqs. (2) with the Euler-
Maruyama technique at time step of τ/300 and imposing
(or not) observational noise and dating errors. From each
time series, we estimated WG causalities and causality ra-
tio (for lX = 3, lY = 4, lXY = lY X = 1). Then we
calculated their mean values and probabilities to exceed
threshold values equal to the respective palaeoclimate esti-
mates (see SM). The result is that for this data amount the
effect of statistical fluctuations on the causality estimates
is considerably stronger than that of dating errors (the
second place) and observational noise (the third place).

Without observational noise and dating errors, we spec-
ify k/α = 0.45 which gives CCF close to the palaeoclimate
estimate. For smaller k/α (e.g., ≤0.3) the WG causal-
ity estimates are insignificant according to the F -test,
while for greater k/α (e.g., ≥0.6) the CCF and WG
causalities estimates considerably exceed the respective
palaeoclimate values. The estimation shows that typically
r̂y→x > 1. A less typical case of ry→x < 1 (even down to
0.7) is observed in fewer than 10% of time series in an
ensemble. Both WG causality estimates are significant at
least at p = 0.05 in more than 90% of the time series. The
appearance of the plots Ĝtr

Y →X(∆) and Ĝtr
X→Y (∆) is simi-

lar to figs. 3(e), (f), except for the locations of the maxima
(see SM): statistically significant Ĝtr

Y →X(∆) has a maxi-
mum near zero, not at a negative lag. However, the half-
time dating error δY = 0.8τ = 20 y moves the maximum of
Ĝtr

Y →X(∆) to negative lags of ∆ ≈ −δY which is observed
in about 50% of the ensemble. Thus, the system (2) with
dating errors is closer to our palaeoclimate example.

The values of r̂Y →X depend on various factors (see SM).
For zero observational noise and zero dating errors the
mean of r̂Y →X is 1.2 which is already low enough as com-
pared to the theoretical rY →X = 1.6, i.e., statistical fluc-
tuations of the estimate already play the role of noise. The
ratio rY →X decreases very slightly under increasing noise
in the driving signal σ2

Ψ even up to a very large 100% level
(at zero noise in the driven signal). The probability to ob-
serve values of r̂Y →X ≤ 0.56 rises with σ2

Ψ from 0.03 only
up to 0.05. The estimates of rY →X appear more sensitive
to the dating error and their mean falls down to 1.1 already
for moderate δY = −0.8τ and the probability of observing
r̂Y →X ≤ 0.56 rises from 0.03 to 0.06 at δY = −0.8τ and
even to 0.08 at δY = −2τ suggesting that the dating er-
ror is more probable to be of importance here than the
observational noise. Overall, for a time series of the con-
sidered moderate length, statistical fluctuations are more
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influential than observational noise and dating errors: the
former decrease the causality ratio from 1.6 to 1.2, as com-
pared to the change of the order of 0.1 induced by the dat-
ing error and 0.05 by observational noise. Thus, the time
series length seems to be the main factor limiting the accu-
racy of the estimation for the palaeoclimate data at hand.
Yet, as justified above, the relative importance of each fac-
tor depends on the time series length. In practice, it can
be checked ad hoc for a time series at hand as is done here.

To develop a standard test for statistical significance,
we note that under the null hypothesis of uncoupled
processes the estimator r̂Y →X resembles the ratio of two
χ2-distributed quantities with lXY and lY X degrees of
freedom. Maximization of Gtr(∆) over an interval of
width 2∆m = 4τ consisting of four independent segments
corresponds to maximization of the χ2-distributed quan-
tity over four independent trials. Numerical simulations
show that for lXY = 1 such a maximization results in
the distribution which can be approximated by the χ2 law
with two degrees of freedom. Then, r̂Y →X is distributed
according to Fisher’s F -law with (2, 2) degrees of free-
dom. However, the quality of the approximation reduces
for short time series, where Monte-Carlo–based estimation
seems more reliable.

Additional tests with simulations of a non-equidistant
sampling from (2) and a subsequent Gaussian kernel-based
filtering (all identical to the palaeoclimate case) show that
it slightly increases the likelihood of the causality esti-
mates obtained from the palaeoclimate data. Still, even
in case of best correspondence, the system (2) exhibits
characteristics similar to those in the palaeoclimate data
only in 10% of all realizations. One reason for this limited
agreement between the data and the stationary random
process (2) can be temporal changes of some characteris-
tics of the processes underlying the proxy records.

Non-stationarity of the palaeoclimate processes.

– We have accounted for a possible nonstationarity by
moving window analysis of the palaeoclimate data. The
main results are presented in fig. 4 for two non-overlapping
time windows corresponding to the two subsequent millen-
nia. Figures 4(a), (b) (the first millennium A.D.) reveal a
usual value of the causality ratio rY →X = 1.05 > 1. Fig-
ures 4(c), (d) do not reveal any significant couplings for
the second millennium A.D. These results suggest a time-
varying solar effect on the Belize climate. Similar analysis
with moving windows of different lengths suggests that
the transition between the two regimes most probably oc-
curred over the period 1000 to 1300 A.D. A strong influ-
ence in the first millennium A.D. would be in line with a
northward position of the Intertropical Convergence Zone
(ITCZ, see also [24]) and hence increased rainfall in Belize.
A reduced solar influence in the second millennium A.D.
could result from a southward displaced ITCZ during the
Little Ice Age, and thus reduced tropical rain in Belize.

Our estimates for the first millennium A.D.
(figs. 4(a), (b)) show that the TSI variations lag the Belize
climate proxy by about 20 y which seems unacceptable

Fig. 4: (Colour online) Estimation from two non-overlapping
1000 y intervals of the palaeoclimate data: ((a), (b)) 15 y B.C.–
985 y A.D.; ((c), (d)) 985 y A.D.–1985 y A.D. Panels (a), (c)
show truncated WG causalities in the directions TSI → Belize
climate (blue) and Belize climate → TSI (green) for lX = 3,
lXY = 1, lY = 4, lY X = 1. Panels (b), (d) show point-
wise p-levels for positivity of Ĝtr

Y →X (blue) and Ĝtr
X→Y (green),

black dashed lines show pointwise p-levels corresponding to the
total p-level of 0.05.

given that TSI should always lead the climatic signal
(climatic response to the Sun). Such a lag may well be
determined by dating error of at least 20 y: Either the age
of the solar signal is underestimated or the age of the cave
signal is overestimated. Importantly, the question about
which signal (or both) has a larger dating error is not
possible to be answered on the basis of bivariate data. We
therefore include the best-dated ice-core based volcanic
activity data [31] in our analysis (instead of the TSI data)
to check whether its influence on the Belize climate (which
is expected and well accepted) is also characterized by a
non-physical negative temporal shift (see SM). We have
found highly statistically significant volcanic forcing on
speleothem δ18O variations, the maximum of Gtr

Y →X(∆)
being shifted to positive ∆ = 2 or 3 y, i.e., ∆ ≈ h/2,
which agrees with the notion of volcanic forcing delayed
by no more than 1 y. Such a small time delay is totally
acceptable. Hence, the test with the volcanic record shows
that there is excellent correspondence between eruptions
recorded in ice cores and YOK-I which strongly supports
the claim of highly accurate dating of the speleothem.
Therefore, we conclude that it is the TSI record which is
less accurately dated in the first millennium A.D., with a
possible age underestimation of about 20 y.

Conclusions. – Dating errors are an almost inevitable
characteristic of palaeoclimate time series which makes
causality estimation even more difficult. We have pro-
posed the causality ratio rY →X based on WG causality (1)
as a relevant tool to cope with this problem. We have
shown that the value of rY →X > 1 correctly indicates the
direction of unidirectional coupling Y → X for identical
stochastic relaxators in the absence of observational noise
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and dating errors, if the sampling is not too sparse. Only
very large observational noise in the driving signal (more
than 50% in terms of variance) along with the noise-free
driven signal makes rY →X close to unity and unsuitable
for coupling directionality identification. The causality
ratio is more sensitive to the dating error: if half a time
series is dated with an error about the relaxation time τ
or greater, rY →X gets close to unity again. Hence, in case
of a priori known coupling direction, the value of rY →X

allows to assess likely values of dating errors and observa-
tional noise level. However, statistical fluctuations of the
estimates from sufficiently short time series may exceed
the influence of dating errors and observational noise.

Applying the above results to analyze palaeoclimate
data, we confirmed a strong influence of solar activity on
the Belize climate over the first millennium A.D. and sug-
gested that this influence strongly decreased in the second
millennium. An unexpectedly low causality ratio appears
to be determined by the shortness of the time series and,
probably, the dating error in the solar proxy over the first
millennium A.D. of about 20 y, the age of the solar data
being underestimated. It seems to be an interesting and
fruitful conclusion from an analysis of such a short piece
of data on the basis of the adapted causality analysis.

The theoretical part of our research is based on the anal-
ysis of a simple, but basic test system (2). Further studies
of the influence of dating errors and other factors on WG
causalities for more general systems are relevant, includ-
ing non-identical processes, higher dimensionality of state
spaces, and various kinds of nonlinearity. More “inertial”
couplings can be analyzed with lXY > 1 and even with
lXY different temporal shifts rather than with a single ∆.
All these features will possibly reveal more complicated re-
lationships between the causality ratio and coupling direc-
tionality which can then be taken into account, extending
the range of applicability of the approach to all fields where
dating errors are encountered. Yet, the research presented
here is valuable as the first step which already reveals that
the adapted WG causality analysis is a promising tool to
deal with data corrupted by dating errors and extract in-
formation about underlying causal couplings.
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