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While it is an important problem to identify the existence of causal associations between two components of
a multivariate time series, a topic addressed in Runge, Heitzig, Petoukhov, and Kurths [Phys. Rev. Lett. 108,
258701 (2012)], it is even more important to assess the strength of their association in a meaningful way. In the
present article we focus on the problem of defining a meaningful coupling strength using information-theoretic
measures and demonstrate the shortcomings of the well-known mutual information and transfer entropy. Instead,
we propose a certain time-delayed conditional mutual information, the momentary information transfer (MIT),
as a lag-specific measure of association that is general, causal, reflects a well interpretable notion of coupling
strength, and is practically computable. Rooted in information theory, MIT is general in that it does not assume a
certain model class underlying the process that generates the time series. As discussed in a previous paper [Runge,
Heitzig, Petoukhov, and Kurths, Phys. Rev. Lett. 108, 258701 (2012)], the general framework of graphical models
makes MIT causal in that it gives a nonzero value only to lagged components that are not independent conditional
on the remaining process. Further, graphical models admit a low-dimensional formulation of conditions, which
is important for a reliable estimation of conditional mutual information and, thus, makes MIT practically
computable. MIT is based on the fundamental concept of source entropy, which we utilize to yield a notion
of coupling strength that is, compared to mutual information and transfer entropy, well interpretable in that,
for many cases, it solely depends on the interaction of the two components at a certain lag. In particular, MIT
is, thus, in many cases able to exclude the misleading influence of autodependency within a process in an
information-theoretic way. We formalize and prove this idea analytically and numerically for a general class of
nonlinear stochastic processes and illustrate the potential of MIT on climatological data.
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I. INTRODUCTION

Today’s scientific world produces a vastly growing and
technology-driven abundance of data across all research fields
from observations of natural processes to economic data
[1]. To test or generate hypotheses on interdependencies
between processes underlying the data, statistical measures of
association are needed. Recently, Reshef et al. [2] put forward
two key demands such a measure should fulfill in the bivariate
case: (1) generality, i.e., the measure should not be restricted
to certain types of associations like linear measures, and
(2) equitability, which means that the measure should reflect
a certain heuristic notion of coupling strength, i.e., it should
give similar scores to equally noisy dependencies. The latter
is especially important for comparisons and ranking of the
strength of dependencies. In this article, we generalize this
idea to multivariate data as needed to reconstruct interaction
networks in the fields of neuroscience, genetics, climate,
ecology, and many more. For the multivariate case, we propose
to add two more basic properties: (3) causality, which means
that the measure should give a nonzero value only to the
dependency between lagged components of a multivariate
process that are not independent conditional on the remaining
process and (4) coupling-strength autonomy, implying that
also for dependent components we seek for a causal notion
of coupling strength that is well interpretable, in that it is
uniquely determined by the interaction of the two components
alone and in a way autonomous of their interaction with

the remaining process. To understand this, consider a simple
example: Suppose we have two interacting processes, X and
Y , and a third process, Z, that drives both of them. A bivariate
measure of coupling strength between X and Y then will be
influenced by the common input of Z, while our demand is
that the measure should be autonomous of the interactions of
X and Y with Z. In an experimental setting this corresponds to
keeping Z fixed and solely measuring the impact of a change in
X on Y averaged over all realizations of Z. This property can
be regarded as one ingredient of a multivariate extension of the
equitability property. Last, we also demand that the measure
should be defined in a way that is practically computable, in
that the estimation does not, e.g., require somewhat arbitrary
truncations like in the case of transfer entropy [3]. Due to these
properties our approach can be used to reconstruct interaction
networks where the links are not only causal but are also
meaningfully weighted and have the attribute of a coupling
delay. This serves as an important feature in inferring physical
mechanisms from interpreting interaction networks.

The first requirement, generality, is fulfilled by any
information-theoretic measure like mutual information (MI)
and conditional mutual information (CMI) [4]. These measures
also fulfill the axioms for dependency measures proposed in
Ref. [5]. Additionally to generality, the authors in Ref. [2]
demonstrate that their algorithmically motivated maximal
information coefficient fulfills the property of equitability.
However, apart from issues with statistical power [6], a crucial
drawback of their measure is that it is not clear how to extend
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it to the multivariate case. There are few works considering
a concept of coupling strength in the multivariate context
of causality. In Refs. [7,8], this problem is approached in
the linear framework of partial directed coherence and in
Refs. [9,10] using the less restricted, yet still model-based,
concept of Granger causality, all sharing the problem that the
model might be misspecified. Transfer entropy (TE) [3] is the
information-theoretic analog of Granger causality [11] and the
issue of arbitrary truncations has been addressed in Ref. [12]
and in our previous article [13]. Still, the problem with TE is
that it is not lag specific, which can lead to false interpretations
like in the case of feedbacks [14] and, as we will demonstrate
analytically and numerically in this article, it is not uniquely
determined by the interaction of the two components alone
and depends on misleading effects of, e.g., autodependency
and the interaction with other processes. In essence, it does not
fulfill the proposed property of coupling-strength autonomy.
In Ref. [15] another information-theoretic approach, based on
a different set of postulates, is discussed.

Our approach to a measure of a causal coupling strength
is based on the fundamental concept of source entropy [16]
and for the special case of bivariate ordinal pattern time
series the momentary information transfer (MIT) has been
introduced recently in Ref. [17]. In this article we utilize the
concept of graphical models to mathematically formalize and
generalize MIT to the multivariate case. We demonstrate that
MIT is practically computable and fulfills the properties of
generality, causality, and coupling-strength autonomy, while
the more complex property of equitability will only partially
be addressed here.

The determination of a causal coupling strength in our
approach is a two-step process. In the first step, the graphical
model is estimated as detailed in Ref. [13], which is used
to determine the existence or absence of a link and, thus, of
a causality between lagged components of the multivariate
process. The second step—the main topic of the present
paper—is the estimation of MIT as a meaningful weight for
every existing link in the graph.

The article is organized as follows. In Sec. II we define and
review TE and the decomposed transfer entropy introduced in
Ref. [13]. In Sec. III we introduce the important concept of
graphical models and in Sec. IV we define MIT and related
measures. All of these measures are compared analytically
(Sec. V), leading to the coupling-strength autonomy theorem
(Sec. VI), and numerically (Sec. VII). Finally, we discuss limi-
tations (Sec. VIII) and provide an application to climatological
data that shows the potential of our approach (Sec. IX). The
appendices provide proofs and further discussions.

II. TRANSFER ENTROPY AND THE CURSE
OF DIMENSIONALITY

Before introducing MIT, we will discuss the well-known TE
and its shortcomings. We will focus on multivariate time series
generated by discrete-time stochastic processes and use the fol-
lowing notation: Given a stationary multivariate discrete-time
stochastic process X, we denote its uni- or multivariate sub-
processes X,Y,Z,W, . . . and the random variables at time t as
Xt ,Xt , . . . . Their pasts are defined as X−

t ≡ (Xt−1,Xt−2, . . .)
and X−

t ≡ (Xt−1,Xt−2, . . .). For convenience, we will often

treat X, Xt , X−
t , and X−

t as sets of random variables, so,
e.g., X−

t can be considered a subset of X−
t . Now the TE

[see Fig. 1(a)]

ITE
X→Y ≡ I (X−

t ; Yt | X−
t \X−

t ) (1)

is the reduction in uncertainty about Yt when learning the
past of Xt , if the rest of the past of Xt , given by X−

t \X−
t , is

already known (where the backslash denotes the subtraction
of a set). Note that, because of the assumed stationarity, ITE

X→Y

is independent of t . TE measures the aggregated influence of
X at all past lags and is not lag specific. The definition of
TE leads to the problem that infinite-dimensional densities
have to be estimated, which is commonly called the “curse
of dimensionality.” In the usual naive estimation of TE the
infinite vectors are simply truncated at some τmax, leading to

I
TE,τmax
X→Y ≡ I

(
X

(t−1,...,t−τmax)
t ; Yt

∣∣X(t−1,...,t−τmax)
t \X−

t

)
, (2)

where X
(t−1,...,t−τmax)
t ≡ (Xt−1, . . . ,Xt−τmax ) (correspondingly

for X) and τmax has to be chosen at least as large as the maximal
coupling delay between X and Y , which can lead to very large
dimensions. In our numerical experiments we will demonstrate
that the choice of a truncation lag τmax, which affects
the estimation dimension via D = Nτmax + 1 (where N is
the number of processes), has a strong influence on the value
of TE and affects the reliability of causal inference. This is a
huge disadvantage because the coupling delay should not have
an influence on the measured coupling strength.

In Ref. [13] the problem of high dimensionality is overcome
by utilizing the concept of graphical models that will be in-
troduced in the next section. In this framework, a decomposed
transfer entropy (DTE) is derived that enables an estimation
using finite vectors

ITE
X→Y ≈ IDTE

X→Y ≡
τ �∑

τ=1

I
(
Xt−τ ; Yt

∣∣SYt ,Xt−τ

)
(3)

for a certain finite setSYt ,Xt−τ
⊂ X−

t \X−
t ∪ X−

t−τ [see Fig. 1(b)]
and with τ � chosen as the smallest τ for which the estimated
remainder is smaller than some given threshold. Another
approach to find a truncation is described in Ref. [12]. While
thereby the somewhat arbitrary truncation lag τmax is avoided
and the estimation dimension is drastically reduced, it can
still be quite high (in the still rather simple model example of
Ref. [13] the maximum dimension was 24).

The summands in Eq. (3) can be seen as the contributions of
different lags to TE but should not be interpreted as lag-specific
causal contributions because they can be nonzero also for lags
τ for which there is no link in the graph. Finally, apart from
the issue of high dimensionality and lag-specific causality, we
will demonstrate in Sec. V that TE or DTE also do not fulfill
the proposed coupling-strength autonomy property. In the
next section we introduce the important concept of graphical
models from which we derive MIT and related measures.

III. GRAPHICAL MODELS AND CAUSALITY

In the graphical model approach [18–20] the conditional
independence properties of a multivariate process are visual-
ized in a graph, in our case a time-series graph. This graph thus
encodes the lag-specific causality with respect to the observed
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(a) (b)

FIG. 1. (Color online) TE and DTE for a multivariate example process as given by Eq. (13) that will be analytically analyzed in Sec. V.
The time-series graph is defined in Sec. III. (a) The TE between the infinite past vector X−

t and Yt (black dots) conditioned on the remaining
infinite past X−

t \X−
t (gray dashed open box). (b) The first three summands of DTE given by Eq. (3). For the CMI between Xt−τ and Yt (black

dots), only the finite set SYt ,Xt−τ
(red solid boxes) is needed to satisfy the Markov property (Eq. (2) in Ref. [13]). SYt ,Xt−τ

⊂ X−
t \X−

t ∪ X−
t−τ

(gray dashed open box) must be chosen so it separates the remaining infinite conditions (X−
t \X−

t ∪ X−
t−τ )\SYt ,Xt−τ

from Yt in the graph (for a
formal definition of paths and separation, see Ref. [18]). Since the separating sets depend on paths between X−

t \X−
t ∪ X−

t−τ and Yt , they can
be determined only after the time-series graph has been estimated.

process. As depicted in Figs. 1 and 2(b), each node in that
graph represents a single random variable, i.e., a subprocess,
at a certain time t . Nodes Xt−τ and Yt are connected by a
directed link “Xt−τ → Yt” pointing forward in time if and
only if τ > 0 and

ILINK
X→Y (τ ) ≡ I (Xt−τ ; Yt |X−

t \{Xt−τ }) > 0, (4)

(a)

(b)

FIG. 2. (Color online) (a) Venn diagram that depicts the entropy
H (Y ) at time t (omitting t and τ in the labels) as a segmented
column bar. It is composed of the source entropy H (Y |PY ) (dark
gray shaded) and parts of the source entropy H (X|PX) (light gray
shaded), the entropy H (PX) of the parents of X (red), and the
entropy H (PY \{Xt−τ }) of the remaining parents of Y (blue). Our CMI
IMIT
X→Y (solid framed segment) is the difference between the entropy

H (Y |PY \{X},PX) (dashed segment) that includes transfer from X

and the source entropy of Y that excludes it. (b) An example of a
time-series graph (see definition in text) corresponding to Eq. (46)
that makes the intuitive entropy picture operational. In this graph MIT
is the CMI between Xt−τ at τ = 2 and Yt (marked by the black dots)
conditioned on the parents PXt−τ

(red) and PYt
\{Xt−τ } (blue).

i.e., if they are not independent conditionally on the past of
the whole process, which implies a lag-specific causality with
respect to X. If Y �= X we say that the link “Xt−τ → Yt”
represents a coupling at lag τ , while for Y = X it represents
an autodependency at lag τ . Nodes Xt and Yt are connected by
an undirected contemporaneous link (visualized by a line) [18]
if and only if

ILINK
X−Y ≡ I (Xt ; Yt | X−

t+1\{Xt,Yt }) > 0, (5)

where also the contemporaneous present Xt\{Xt,Yt } is in-
cluded in the condition. In the case of a multivariate autore-
gressive process as defined later in Eq. (40), this definition
corresponds to nonzero entries in the inverse covariance
matrix of the innovations ε. Note that stationarity implies that
“Xt−τ → Yt” whenever “Xt ′−τ → Yt ′” for any t ′.

Like TE, the CMIs given by Eqs. (4) and (5) involve infinite-
dimensional vectors and, thus, cannot be computed directly but
only involving truncations. As shown in Sec. VII, this measure
therefore suffers from the problem of high dimensionality
and also theoretically does not fulfill the coupling-strength
autonomy property as analyzed in Sec. V.

On the other hand, one can exploit the Markov property and
use the finite set of parents defined as

PYt
≡ {Zt−τ : Z ∈ X,τ > 0,Zt−τ → Yt } (6)

of Yt [blue box in Fig. 2(b)] which separate Yt from the past
of the whole process X−

t \PYt
. The parents of all subprocesses

in X together with the contemporaneous links comprise the
time-series graph. In Ref. [13] an algorithm for the estimation
of these time-series graphs by iteratively inferring the parents is
introduced. In the supplementary material of Ref. [13] we also
describe a suitable shuffle test and a detailed numerical study
on the detection and false positive rates of the algorithm. The
Markov properties hold for models sufficing the very general
condition (S) in Ref. [18].

The determination of a causal coupling strength now is a
two-step procedure. In the first step, the time-series graph is
estimated as detailed in Ref. [13] to determine the existence
or absence of a link and, thus, of a causality between lagged
components of X. The second step is the determination of
a meaningful weight for every existing link in the graph. The
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MIT introduced in the next section is intended to serve this aim
by attributing a well-interpretable coupling strength solely to
the inferred links of the time-series graph.

IV. MOMENTARY INFORMATION TRANSFER
AND SOURCE ENTROPY

The parents of a subprocess Y at a certain time t are key
to understanding the underlying concept of source entropy.
Each univariate subprocess X of a stationary multivariate
discrete-time stochastic process X will at each time t yield
a realization xt . The entropy of Xt measures the uncertainty
about xt before its observation, and it will in general be reduced
if a realization of the parents PXt

⊂ X−
t is known. But for a

nondeterministic process, and most real data will contain at
least some random noise, there will always be some “surprise”
left when observing xt . This surprise gives us information
and the expected information is called the source entropy
H (Xt |PXt

) of X. Now the MIT between X at some lagged
time t − τ in the past and Y at time t is the CMI that measures
the part of the entropy of Y that is shared with the source
entropy of X,

IMIT
X→Y (τ ) ≡ I

(
Xt−τ ; Yt

∣∣PYt
\{Xt−τ },PXt−τ

)
= H

(
Yt

∣∣PYt
\{Xt−τ },PXt−τ

)− H
(
Yt

∣∣PYt

)
. (7)

This approach of “isolating source entropies” is sketched in
a Venn diagram in Fig. 2(a). The attribute momentary [17] is
used because MIT measures the information of the “moment”
t − τ in X that is transferred to Yt . This “momentariness” is
closely related to the property of coupling-strength autonomy
as we will show in the next sections. Similarly to the definition
of contemporaneous links in Eq. (5), we can also define a
contemporaneous MIT,

IMIT
X−Y ≡ I

(
Xt ; Yt |PYt

,PXt
,NXt

\{Yt },NYt
\{Xt },

P
(
NXt

\{Yt }
)
,P
(
NYt

\{Xt }
))

, (8)

where N denotes the contemporaneous neighbors given by

NYt
≡ {Xt : X ∈ X,Xt−Yt } (9)

and correspondingly for X and their parents. Due to Markov
properties, the contemporaneous MIT is equivalent to the
formula defining contemporaneous links Eq. (5). This is,
however, not the case for the lagged MIT. Like any (C)MI,
MIT is sensitive to any kind of statistical association and,
therefore, guarantees the property of generality. Because MIT
uses the parents PYt

as conditions, it also fulfills the property
of lag-specific causality in that it is nonzero only for lagged
processes that are not independent conditional on X−

t .
As related measures, we can also choose either one of

the parents as a condition, which, dropping the attribute
“momentary,” leads to the information transfers ITY and ITX,

I ITY
X→Y (τ ) ≡ I

(
Xt−τ ; Yt

∣∣PYt
\{Xt−τ }

)
, (10)

I ITX
X→Y (τ ) ≡ I

(
Xt−τ ; Yt

∣∣PXt−τ

)
. (11)

ITY isolates only the source entropy of Y . Like MIT it
is nonzero only for dependent nodes (and therefore fulfills
the properties of generality and causality) and used in the
algorithm to estimate the time-series graph [13]. ITX measures

the part of source entropy in Xt−τ that reaches Yt on any path
and is, thus, not a causal measure, yet in many situations we
might only be interested in the effect of X on Y , no matter
how this influence is mediated. For τ > 0 these three CMIs
are related by the inequality

I ITX
X→Y (τ ) � IMIT

X→Y (τ ) � I ITY
X→Y (τ ), (12)

which holds under the “no sidepath” constraint as specified in
Sec. VI. The proof is given in the appendix. The very definition
of MIT, ITY, and ITX already leads to a low-dimensional
estimation problem without arbitrary truncation parameters.
Further, the underlying theory of time-series graphs allows for
an analytical evaluation of the properties of these measures as
we will demonstrate in the following section. See Ref. [21] for
software to compute the time-series graph, MIT, and related
measures.

To clarify, each of the CMIs introduced in the preceding
sections are intended to measure a different aspect of the
coupling between X and Y . In the following analytical analysis
of simple models we will discuss the interpretability of the
different measures.

V. ANALYTICAL COMPARISON

To motivate our choice of a measure of coupling strength
and to clarify the important coupling-strength autonomy
property, we discuss an analytically tractable model of a
multivariate Gaussian process,

Zt = cXZXt−1 + ηZ
t ,

Xt = aXXt−1 + ηX
t ,

(13)
Yt = cXY Xt−2 + cWY Wt−1 + ηY

t ,

Wt = ηW
t ,

with independent Gaussian white noise processes η·
t with

variances σ 2
· . The corresponding time-series graph is depicted

in Fig. 1 and the parents are PYt
= {Xt−2,Wt−1} and PXt−2 =

{Xt−3}. Generally, the conditional entropy H (Y |Z) of a DY -
dimensional Gaussian process Y conditional on a (possibly
multivariate) process Z is given by

H (Y |Z) = 1

2
ln

(
(2πe)DY

|�YZ|
|�Z|

)
, (14)

where |�YZ| is the determinant of the covariance matrix of
(Y,Z). In our case, Y is univariate and, thus, DY = 1. The
variances and covariances needed to evaluate the determinants
and detailed derivations for the following formulas are given
in the appendix.

First, we analyze TE given by Eq. (1). TE can be written as
the difference of conditional entropies

ITE
X→Y = H (Yt | X−

t \X−
t ) − H (Yt | X−

t ), (15)

where the latter entropy, conditioned on the whole infinite
past, is actually the source entropy of Y and can be much
easier computed by exploiting the Markov property

H (Yt | X−
t ) = H

(
Yt

∣∣PYt

)
, (16)
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which yields, using Eq. (14),

H
(
Yt

∣∣PYt

) = 1

2
ln

(
2πe

∣∣�YtXt−2Wt−1

∣∣∣∣�Xt−2,Wt−1

∣∣
)

= 1

2
ln
(
2πeσ 2

Y

)
. (17)

The source entropy of Y is, therefore, given by the entropy
of the innovation term ηY . In the first entropy term, on the
other hand, the infinite vector cannot be treated that easily and
we have to evaluate the determinants of infinite-dimensional
matrices in

H (Yt |Y−
t ,W−

t ,Z−
t ) = 1

2
ln

(
2πe

∣∣�YtY
−
t W−

t Z−
t

∣∣∣∣�Y−
t W−

t Z−
t

∣∣
)

. (18)

However, for the special case of cXZ = cWY = 0, i.e., no input
processes apart from the autodependency in X, the quotient
of these matrices can be simplified to the quotient of infinite
Toeplitz matrices. As shown in the appendix, we can then
apply Szegö’s theorem [22,23] and get

ITE
X→Y

cXZ=cWY =0= 1

2
ln

[
1 +

(
c2
XY σ 2

X

)/(
1−a2

X

)
σ 2

Y

]
. (19)

Another tractable case is aX = 0, for which the blocks of the
covariance matrix �YtY

−
t W−

t Z−
t

become diagonal and

ITE
X→Y

aX=0= 1

2
ln

[
1 + c2

XY σ 2
Xσ 2

Z

σ 2
Y

(
c2
XZσ 2

X + σ 2
Z

)
]

. (20)

Thus, in the first case, the value of TE for our model depends
on the autodependency coefficient and in the second case
on the coupling coefficient and variance of Z. But why
should a measure of coupling strength between X and Y

depend on internal dynamics of X and, even more so, on
the interaction of X with another process Z? While it can be
information-theoretically explained, it seems rather unintuitive
for a measure of coupling strength between X and Y .

We next compute the CMI ILINK
X→Y that defines links in a

time-series graph. Writing Eq. (4) for τ = 2 as a difference
of conditional entropies, the second term is again the source
entropy as given by Eq. (17) and in this case also the first
entropy can be simplified using the Markov property

H (Yt |X−
t \Xt−2) = H

(
Yt

∣∣X(Xt−1,...,Xt−3)
t \{Xt−2}

)
(21)

to arrive at a finite covariance matrix from which a lengthy
computation yields

ILINK
X→Y = 1

2
ln

[
1 + c2

XY σ 2
Xσ 2

Z

σ 2
Y

(
c2
XZσ 2

X + (
1+a2

X

)
σ 2

Z

)
]

. (22)

Again, also this measure of coupling strength depends on the
coefficients belonging to other coupling and autodependency
links.

We now turn to the measures that solely use the parents as
conditions, which has the analytical and numerical advantage
of low-dimensional computations. The resulting expressions
for the CMI with no conditions, i.e., the mutual information
(MI), and for either one of the parents as a condition for τ = 2

are

IMI
X→Y = 1

2
ln

[
1 +

(
c2
XY σ 2

X

)/(
1 − a2

X

)
c2
WY σ 2

W + σ 2
Y

]
, (23)

I ITY
X→Y = 1

2
ln

[
1 +

(
c2
XY σ 2

X

)/(
1 − a2

X

)
σ 2

Y

]
, (24)

I ITX
X→Y = 1

2
ln

(
1 + c2

XY σ 2
X

c2
WY σ 2

W + σ 2
Y

)
. (25)

Thus, MI depends on the coefficients and variances of the
input processes, while ITX and ITY still depend at least on the
coefficient and variance of the process that is not conditioned
on. Contrary to TE and LINK, though, neither of the three
measures depends on the interaction with Z. In our model the
inputs to X and Y , i.e., the autodependency with Xt−3 and the
external input from Wt−1, are independent, which makes the
formulas much simpler.

Finally, the MIT for τ = 2 is

IMIT
X→Y = 1

2
ln

(
1 + c2

XY σ 2
X

σ 2
Y

)
, (26)

which solely depends on the model coefficients that govern the
source entropies, i.e., the variances σ 2

X, σ 2
Y , and the coupling

coefficient cXY .
This equation can be proven to hold for arbitrary multivari-

ate linear autoregressive processes under the “no sidepath”
constraint specified in the next section. More generally, for a
class of additive models MIT depends only on the coupling
coefficient cXY and the source variances of ηX and ηY as will
be proven in the coupling-strength autonomy theorem in the
next section.

But can a coupling strength always be associated with only
one coupling coefficient cXY ? In the following—still linear—
example model visualized in Fig. 3(a) this is not the case,

Xt = ηX
t ,

Wt = cXWXt−1 + ηW
t , (27)

Yt = cXY Xt−2 + cWY Wt−1 + ηY
t ,

(a) (b)

FIG. 3. (Color online) Two examples of couplings that cannot
be related to one single coefficient cXY . Black dots mark Xt−τ and
Yt , and the red and blue boxes their parents. (a) A sidepath, i.e., if
there exists a path from Xt−2 to some parent of Yt . The coupling then
cannot be related to one single link but additionally to the path via
Wt−1. (b) Visualization of a nonlinear coupling between Xt−1 and
Yt . In this case, the entropies of Xt−1 and its parents “mix” and the
coupling should be considered as emanating from (Xt−1,PXt−1 ) rather
than Xt−1 alone.
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where the influence of Xt−2 on Yt has two paths: One via
the direct coupling link “Xt−2 → Yt” and one via the path
“Xt−2 → Wt−1 → Yt” such that we can rewrite

Yt = cXY Xt−2 + cWY

(
cXWXt−2 + ηW

t−1

)+ ηY
t , (28)

from which we see that the coupling cannot be unambiguously
related to one coefficient. Here, MIT at τ = 2 is

IMIT
X→Y = 1

2
ln

[
1 + c2

XY σ 2
Xσ 2

W

σ 2
Y

(
c2
XWσ 2

X + σ 2
W

)
]

(29)

and depends not only on cXY but also on the coefficient cXW

of the link “Xt−2 → Wt−1” and on the variance of W . In this
case it might be more appropriate to “leave open” both paths
and exclude Wt−1 from the conditions, which—only in this
case—reduces the modified MIT to the MI,

I (Xt−2; Yt ) = 1

2
ln

[
1 + (cXY + cXWcWY )2σ 2

X

c2
WY σ 2

W + σ 2
Y

]
. (30)

Here the sum cXY + cXWcWY is the covariance along both
paths, which can also vanish for cXY = −cXWcWY , and seems
like a more appropriate representation of the coupling between
Xt−2 and Yt .

Another example where one cannot unambiguously relate
the coupling strength to one coefficient is for a nonlinear
dependency between X and Y [Fig. 3(b)],

Zt = ηZ
t ,

Xt = cZXZt−1 + ηX
t , (31)

Yt = cXY (Xt−1)2 + ηY
t .

If we express Yt explicitly in terms of the source variance of
X and the parent of X

Yt = cXY c2
ZX(Zt−2)2 + 2cZXcXY Zt−2η

X
t−1

+ cXY

(
ηX

t−1

)2 + ηY
t , (32)

we note that, due to the term 2cZXcXY Zt−2η
X
t−1, the effect

of Zt−2 is not additively separable from the source process
ηX

t−1. In the Venn diagram of Fig. 2(a) this “mixing” of
entropies implies that the parts of the entropies H (X|PX) and
H (PX) that overlap with H (Y ) are no longer distinguishable,
which could be visualized by the red and light gray shadings
bleeding into one another. Therefore, the coupling should be
considered as emanating from (Xt−1,PXt−1 ) rather than Xt−1

alone [visualized by a thick arrow in Fig. 3(b)]. For this
nonlinear model we have not found an analytical expression
for MIT, but the more general case of this model is studied
numerically in the appendix.

These two examples point to constraints under which full
coupling-strength autonomy can be reached. In the next section
we will formalize these constraints to general conditions in a
theorem of coupling-strength autonomy.

VI. COUPLING-STRENGTH AUTONOMY THEOREM
AND MODIFICATIONS OF MIT

Let X, Y be two subprocesses of some multivariate
stationary discrete-time process X sufficing condition (S) in
Ref. [18] with time-series graph G as defined in Sec. III
and coupling link “Xt−τ → Yt” for τ > 0. The following

derivations also hold for more than one link at lags τ ′ �= τ

between X and Y . As before, we denote their parents PYt

and PXt
. For the link “Xt−τ → Yt” we define the following

conditions:
(i) Additivity means that the dependence of Xt on its source

process ηX
t and parents PXt

and of Yt on its source process ηY
t ,

Xt−τ and the remaining parents PYt
\{Xt−τ } is additive, i.e.,

they can be written as

Xt = gX(PXt
) + ηX

t , (33)

Yt = f (Xt−τ ) + gY

(
PYt

\{Xt−τ }
)+ ηY

t , (34)

for possibly multivariate random variables PXt
and

PYt
\{Xt−τ }, univariate independent and identically distributed

(i.i.d.) random variables ηX and ηY with arbitrary, not neces-
sarily identical distributions, and arbitrary functions gY , gX, f .

(ii) Linearity in f: The dependence of Yt on Xt−τ is linear,
i.e., f (x) = cx with real c.

(iii) “No sidepath” constraint, i.e., in the time-series graph
G the node Xt−τ is separated from (PYt

\PXt−τ
)\{Xt−τ } given

PXt−τ
(for a formal definition of paths and separation, see

Ref. [18]). Since, due to condition (S) in Ref. [18], separation
implies conditional independence, this means

I
((
PYt

\PXt−τ

)\{Xt−τ }; Xt−τ

∣∣PXt−τ

) = 0. (35)

Theorem (coupling-strength autonomy). MIT defined in
Eq. (7) for the coupling link “Xt−τ → Yt” for τ > 0 of
a multivariate stationary discrete-time process X sufficing
condition (S) in Ref. [18] has the following dependency
properties:

(i) If all three conditions (1)–(3) hold, then MIT can be
expressed as an MI of the source processes,

IMIT
X→Y (τ ) = I

(
ηX

t−τ ; cηX
t−τ + ηY

t

)
. (36)

Since ηY
t and ηX

t−τ are assumed to be independent, the
probability density of their sum is given by their convolution.
The MIT thus depends solely on c and the joint and marginal
distributions of ηX

t−τ and the convolution of cηY
t with ηX

t−τ .
(ii) If only conditions (1) and (2) hold, i.e., there exists a

sidepath between Xt−τ and some nodes in PYt
\PXt−τ

, then
MIT depends additionally on the distributions of at least the
“sidepath parents” in PYt

and their functional dependence on
Yt ,

IMIT
X→Y (τ ) = I

(
ηX

t−τ ; cηX
t−τ + ηY

t

∣∣PYt
\{Xt−τ }

)
. (37)

This relation can be further simplified if gY (PYt
\{Xt−τ }) is

additive in some parents.
(iii) If only the additivity condition (1) holds, i.e., f (x) is

nonlinear and mixes ηX
t−τ with the parents PXt−τ

, then MIT
depends additionally on f , the distributions of variables in
PXt−τ

, as well asPYt
\{Xt−τ }, and their functional dependencies

on Yt ,

IMIT
X→Y (τ ) = I

(
ηX

t−τ ; f
[
ηX

t−τ + gX

(
PXt−τ

)]
+ ηY

t

∣∣PYt
\{Xt−τ },PXt−τ

)
. (38)

This relation can be further simplified if some parents in
PYt

\{Xt−τ } are independent of f [ηX
t−τ + gX(PXt−τ

)].
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For a contemporaneous link “Xt − Yt ,” the contemporane-
ous MIT defined in Eq. (8) under the condition (1) is

IMIT
X−Y = I

(
ηX

t ; ηY
t

∣∣NXt
\{Yt },NYt

\{Xt }
)
. (39)

A contemporaneous link cannot have sidepaths. For X = Y ,
MIT measures the autodependency strength. The proofs are
given in the appendix.

We now discuss some remarks on the theorem and possible
modifications of MIT as follows.

(i) For the special case of multivariate linear autoregressive
processes of order p [24] defined by

Xt =
p∑

s=1

	(s)Xt−s + εt , εt ∼ N (0,
), (40)

with the coupling coefficient cXY at lag τ corresponding to
the connectivity matrix entry 	(τ )YX, and with no sidepaths,
Eq. (36) leads to

IMIT
X→Y (τ ) = 1

2
ln

(
1 + c2

XY σ 2
X

σ 2
Y

)
, (41)

generalizing the MIT for our analytical model in Eq. (26).
For an autodependency at lag τ with coefficient aY and no
sidepaths, the MIT is IMIT

Y→Y (τ ) = 1
2 ln(1 + a2

Y ), independent of
the source variance σ 2

Y .
(ii) The form Eq. (41) is reminiscent of the Shannon-

Hartley theorem in communication theory [4]. There the
coupling strength corresponds to the communication channel
capacity C, which is given by the maximum MI over all
possible input sources: C = max{P (X)} I (X; Y ). The Shannon-
Hartley theorem for Gaussian channels then reads

C = B log

(
1 + S

N

)
(42)

with bandwidth B and signal-to-noise ratio S/N , which in
Eq. (41) corresponds to c2

XY σ 2
X/σ 2

Y . The difference to our
measure of coupling strength is that we cannot manipulate the
input sources and thus cannot measure the channel capacity
alone. We also expressed the various other CMIs occuring
above in this form, where the quotient can be interpreted as a
signal-to-noise ratio. For example, in Eq. (25), c2

XY σ 2
X is the

signal strength and c2
WY σ 2

W + σ 2
Y is the noise strength.

(iii) For sidepaths, i.e., under the conditions (1) and (2) only,
the example of MIT and the modified MIT for the case of our
model example Eq. (27) point to the suggestion, that it might be
more appropriate to “leave open” all paths from Xt−τ to Yt by
excluding those parents of Yt that are depending on Xt−τ . Then
the possible paths of entropy transfer are either via the direct
link “Xt−τ → Yt” or via the sidepaths “Xt−τ

→
− · · · → · · · →

Yt” (the symbol “→
− ” denotes that the sidepath can start from

Xt−τ either directed or contemporaneous, while the subsequent
links of the path can only be directed). To isolate all of these
paths, we suggest to additionally condition on the parents of
the intermediate nodes on these sidepaths. These nodes can be
characterized by

A�
Yt

≡ {
Wk

t−τk
∈ AYt

\{Xt−τ ,PXt−τ

}
:

I
(
Wk

t−τk
; Xt−τ |PXt−τ

)
> 0

}
, (43)

where AYt
denotes the ancestors of Yt , i.e., the set of nodes

with a directed path towards Yt [18]. We call the modified MIT

MITS, where “S” stands for “sidepath,”

IMITS
X→Y (τ ) ≡ I

(
Xt−τ ; Yt |

{
PYt

,P
(
A�

Yt

)}\{A�
Yt

,Xt−τ

}
,PXt−τ

)
.

(44)

(iv) For nonlinear dependencies f , one could modify MIT
to the CMI between Yt and the joint vector (Xt−τ ,PXt−τ

),
leading to MITN, where “N” stands for “nonlinear,”

IMITN
X→Y (τ ) ≡ I

((
Xt−τ ,PXt−τ

)
; Yt

∣∣PYt
\(Xt−τ ,PXt−τ

))
. (45)

These modifications will be studied in a separate paper.
The theorem implies that under the conditions (1)–(3) the

MIT is independent of other coefficients belonging to other
links. If this holds for all coupling strengths of all links in
the model, then the MITs are independent in a functional
sense. Note, however, that all coupling strengths of links
emanating from the same process X will depend on the source
variance of ηX. Thus, MIT somewhat disentangles the coupling
structure, which is exactly the coupling-strength autonomy
that makes MIT well interpretable as a measure that solely
depends on the “coupling mechanism” between X at lag t − τ

and Yt , autonomous of other processes. One such possible
misleading input “filtered out” by MIT is autocorrelation,
or, more generally, autodependency, as will be shown in the
numerical experiments and the application to climatological
data. In the next section we investigate the coupling-strength
autonomy property numerically.

VII. NUMERICAL COMPARISON

In the following we compare MI, TE, MIT, and related
measures numerically to investigate the properties of gener-
ality and coupling-strength autonomy for a general class of
nonlinear discrete-time stochastic multivariate processes,

Zt = aZZt−1 + ηZ
t ,

Xt = aXXt−1 + cZXg(Zt−1) + ηX
t ,

Yt = aY Yt−1 + cWY g(Wt−1) + cXY f (Xt−2) + ηY
t ,

Wt = aWWt−1 + ηW
t , (46)

with independent Gaussian white-noise processes η·
t with

all variances σ 2
· = 1. The corresponding time-series graph

is depicted in Fig. 2(b). We estimate the various coupling
measures for fixed cXY and aZ = aW = 0.5 and vary the input
coefficients,

aX = cZX ∈ {0.0, 0.1, . . . ,0.8},
aY = cWY ∈ {0.0, 0.1, . . . ,0.8},

and functional dependencies of inputs

linear g(x) = x,

squared g(x) = 0.3x2,

stochastic g(x) = 2xεt with uniform i.i.d. εt ∈ [0,1],

exponential g(x) = 0.3 × 2x,

sinusoidal g(x) = sin 4x.

Here we depict results for linear f (x) = x such that the
dependencies of the multivariate process suffice all three
conditions; a nonlinear dependency type is discussed in the
appendix. The ensemble E then consists of all combinations
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(a)

(b)

FIG. 4. (Color online) Numerical experiments with the model
Eq. (46) using time-series length T = 1000. In (a) we plot the
ensemble average 〈I 〉E for fixed cXY = 0.6 for all measures as
specified in the main text. In (b) we show the ensemble densities of all
measures for different coupling coefficients cXY = 0.0, 0.3, 0.6, 0.9
(from left to right: red, yellow, green, and blue solid lines). The
densities are estimated using Gaussian kernel smoothing according to
Scott’s rule, showing only the 90% most probable ensemble members.

of input coefficients and functional forms, each combination
run with 120 trials. The CMIs are estimated using a nearest-
neighbor (kNN) estimator [25,26] with parameter k = 1 (small
values of k lead to a lower estimation bias but higher variance
[25,26]).

In the top panel of Fig. 4(a) we plot the ensemble average
〈Î 〉E for fixed cXY = 0.6 for the following measures with
τ = 2: MI I (Xt−τ ; Yt ) (gray with dotted line), ITY according
to Eq. (10) (green with dash-dotted line), ITX according to

Eq. (11) (blue with dashed line), and MIT according to Eq. (7)
(red with solid line). The parents are shown in Fig. 2(b).

MIT is largely invariant to changes of the remaining
coefficients and g(x) and approximately attains the analytical
value for zero input coefficients [given by Eq. (26) for
cXY = 0.6 and σ 2

X = σ 2
Y = 1]: I ≈ 0.15. This implies that

the MIT of the coupling link is autonomous of the MITs
corresponding to the input links “Z→X” for Z ∈ PX and
“W→Y ” for W ∈ PY \{X} which scale with these coefficients.
Note, however, that all coupling strengths of links emanating
from the same process will depend on its variance σ 2

· like in
Eq. (26). Further, MI is mostly larger but also can be smaller
than MIT, which can be explained with the entropy diagram in
Fig. 2(a): Larger MIs occur if the entropy is increased due to
a larger input of H (PX) and smaller MIs occur if the relative
shared part of H (X) in H (Y ) decreases due to a larger input
of H (PY ). For zero inputs, MI approaches the analytical value
I ≈ 0.15, to where all four measures converge. ITY can at
least exclude input to Y and ITX can exclude input to X. Note,
however, that the dependence of ITX and ITY on the input
coefficients can differ in other models. The average of ITX
(ITY) is always smaller (larger) equal than MIT, confirming
the inequality Eq. (12).

In the bottom panel of Fig. 4(a) we compare MIT (red
with solid line) to TE according to Eq. (2) truncated at
τmax = 4 (gray with dotted line), the CMI ILINK

X→Y defining
links in the time-series graph according to Eq. (4) truncated at
τmax = 4 (green with dash-dotted line) and DTE according to
Eq. (3) with τ � = 3 (blue with dashed line). TE and LINK
have a much larger estimation dimension of 17 (as much
as 25 for τmax = 6) compared to 6 for MIT and between 5
and 12 for the summands of DTE. Compared to DTE this
leads to a negative relative bias in TE of about 50% for the
analytically known value for zero input coefficients I ≈ 0.15.
Apart from this bias, TE and DTE scale similarly with the
input coefficients. LINK is dependent on aX as we expect
from our analytical considerations [Eq. (22)]. The MIT shows
some slight dependence for strong inputs due to estimation
problems for short samples, but otherwise, also numerically,
we demonstrate here that only MIT fulfills the proposed
property of coupling-strength autonomy.

In Fig. 4(b) we show the whole densities of E of all
measures for different coupling coefficients cXY . The aim
of this experiment is to measure how well the measures can
distinguish the coupling strength for different cXY as demanded
by the property of equitability. The dashed lines show the
densities of the ensemble for aX = cZX = aY = cWY = 0, i.e.,
if both X and Y are independent of their parents.

As we now already expect, MI takes a whole range of
values for the same cXY . ITY is broadly peaked towards
higher I values and ITX towards lower values, confirming
the inequality Eq. (12). Note, that this relation holds only on
average. The different coupling coefficients cXY can be well
distinguished only with MIT. DTE tends to slightly higher
values for larger autodependencies within X, as expected from
our analytical results. Additionally, the variance of the DTE
estimate is higher because each summand’s variance adds up
to the total variance of the DTE estimate. The remaining four
plots demonstrate that TE and the CMI of Eq. (4) strongly
suffer from the negative bias associated with high-dimensional
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estimation depending on the chosen τmax. Therefore, TEs or
LINKs estimated with different τmax cannot be compared with
each other.

For the “unperturbed” case of zero inputs, the ensemble
distributions of MI [dashed lines in Fig. 4(b)] are—as
expected—similar to the one for MIT with “conditioned-out”
inputs (solid lines) apart from a small bias and smaller
variance related to slightly higher dimensional estimation. For
conditionally independent variables (cXY = 0, red lines), all
measures have almost no bias, i.e., Î ≈ 0, which is a property
of the kNN estimator and holds also for short samples [25]. It
may seem that, apart from the bias, at least the variance is much
smaller for the high-dimensional measures TE and LINK, but
the relative variance 〈Î 2〉/〈Î 〉 actually increases, leading to a
worsened distinguishability.

Summarizing, our experiments provide numerical evidence
that MIT acts as an information-theoretic “filter” that excludes
undesired effects of autodependency or other misleading
inputs. The MIT is, thus, specific only to the interaction of
the two lagged subprocesses and can disentangle the measured
coupling strengths of the different links in a time-series graph.
The commonly used measures MI and TE, on the other hand,
are possibly affected also by the interactions that X and Y have
with other processes. In this respect MIT is more intuitive and
better interpretable than TE or MI. Thus, the coupling-strength
autonomy property can be regarded as one ingredient of a
multivariate extension of the equitability property.

VIII. DISCUSSION AND LIMITATIONS

Let us here discuss some limitations of our approach.
(i) Our notion of causality is to be understood only with

respect to the observable processes included in the parents,
while the general notion of causality [27] requires exclusion
of the influence of the whole universe.

(ii) The graphical model imposes a discrete description of
causal interactions. Regarding the source entropy, we face
the problem that if a time-continuous process is sampled at
some interval �s, there is an infinite set of unobserved nodes
in between every Xt and Xt−1 for X ∈ X in the time-series
graph. We will, therefore, not be able to access the source
entropy solely at time t but only the aggregated information
in the interval [t − �s,t]. But for discrete processes graphical
models are applicable to the large class of models sufficing
condition (S) in Ref. [18].

(iii) Although the graphical model approach reduces the
estimation dimension to a minimum, the dimension can still
be relatively high, leading to biased estimates for shorter
samples. A study on the effects of high-dimensional estimation
is subject to further research. Generally, there are problems
with entropy estimation for highly skewed distributions which
need to be resolved by improved estimators of CMI.

(iv) Our two-step approach first necessitates the estimation
of the time-series graph which comes with the associated
problems of false positive detections due to multiple testing
and missed causal links. These problems are analyzed in the
supplementary material in Ref. [13].

(v) As discussed in the coupling-strength autonomy the-
orem, a coupling strength cannot be attributed to only one
single coefficient in all cases. Only if this is the case, i.e.,

under the conditions (1)–(3), can MIT filter out all influences
from the parents of X and Y . If the dependency is nonlinear
or sidepaths exist, one could use modifications of MIT like
IMITS
X→Y [Eq. (44)] and IMITN

X→Y [Eq. (45)] for a more appropriate
measure of coupling strength. Although for full coupling-
strength autonomy the link “Xt−τ → Yt” needs to be linear,
the remaining dependencies can still be nonlinear and the
source processes can have arbitrary distributions. The process
can, therefore, not easily be estimated using model-based
regressions.

(vi) Regarding equitability, a desired property of a coupling
measure would be that it scales linearly with the coupling
parameter cXY like the partial correlation approximately in
the Gaussian case. As can be seen from the analytical
derivations and the numerical example in Fig. 4(b), MIT scales
∝ ln(1 + cXY · · · ) for Gaussian dependencies, but a scaling
like the partial correlation in this case can be attained by
the transformation I → √

1 − e−2I [4]. For more complex
dependencies improved estimators that are more adapted to
the distributions might help.

IX. APPLICATION TO CLIMATOLOGICAL TIME SERIES

We now analyze monthly air-temperature anomalies in the
tropics at two different altitudes in a NCEP/NCAR reanalysis
data set [28]. To investigate the upwelling of heat from the
sea surface towards the upper troposphere in a height of about
12 km, we measure the coupling strength between the surface
pressure level (X in Fig. 5) and the 200-hPa pressure level (Y )
for all tropical (latitudes between 30oS and 30oN) grid points.

First, we estimated the time-series graph using the algo-
rithm introduced in Ref. [13] separately for each surface-
troposphere pair at each grid point using a significance
threshold estimated with the shuffle test as in Ref. [13]. We
found, on average, the parentsPXt

= {Xt−1} andPYt
= {Yt−1},

i.e., lag-1 autodependencies, and the contemporaneous link
“Xt − Yt .”

With these parents, the spatial average of all lag functions of
MIT in the left panel of Fig. 5(a) shows the contemporaneous
link “Xt − Yt” as a significant peak, indicating that the time
scale of the coupling is below the lag of 1 month. The MI,
on the other hand, is significant for a wide range of lags,
making an assessment of a physical coupling delay difficult.
While the contemporaneous link cannot be interpreted as a
directed coupling, we can still assess its strength. The MIT of
a linear Gaussian process with the same time-series graph is

IMIT
X−Y = 1

2 ln( σ 2
Xσ 2

Y

σ 2
Xσ 2

Y −σ 2
XY

), while MI additionally depends on the
autodependency coefficients.

Figure 5(b) shows a large (compared to the extra tropics)
IMI
X−Y all across the tropics. Significant IMIT

X−Y values, on the
other hand, are more confined and largest between 90oE
and 170oW. Larger MIT values indicate a stronger coupling
between the surface and upper tropospheric level in an area
that actually corresponds to a region of strong upwelling
in the Walker circulation [29]. The difference between MI
and MIT is largest in the eastern Pacific where also the
increased autodependency in surface air temperatures is ap-
parent (IMIT

X→X). This strong persistence thus leads to a spurious
increase in MI, which cannot differentiate the effects of
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(a)

(b)

FIG. 5. (Color online) Analysis of air-temperature anomalies at
the surface (X) and the upper troposphere (Y ), T = 1008 months
(1927–2011). (a) The spatial average and standard deviation of
coupling (left plot) and autodependency (middle plot for X, right
plot for Y ) lag functions for MI (dashed lines in light colors) and
MIT (solid lines in dark colors). In (b) we spatially resolve the
coupling strengths of the contemporaneous link “Xt − Yt” and the
autodependency “Xt−1 → Xt” for MI (upper two panels) and MIT
(lower two panels). IMI

Y→Y and IMIT
Y→Y (not shown) are almost the same

all across the tropics. For the contemporaneous link values below the
98% significance level are in white. CMIs estimated with k = 10.

increased autodependencies and increased contemporaneous
coupling like MIT. With our measure of coupling strength
we are, thus, able to infer a more reasonable picture of
the physical interactions in the Walker circulation. This
preliminary example underlines the importance of having a
meaningfully interpretable coupling measure.

X. CONCLUSIONS

To conclude, we have analytically and numerically shown
that the commonly used measures MI and TE can be rather
unintuitive as measures of coupling strength. To overcome this
limitation, we propose a two-step approach, where in the first
step the existence of lag-specific couplings, i.e., the causal
links, and contemporaneous links in a multivariate process
are determined as discussed in Ref. [13]. For the second
step addressed in the present article, we have generalized the
information-theoretic MIT as a lag-specific measure that has a
property which we call coupling-strength autonomy. It allows
for a well-interpretable coupling strength reminiscent of an
experimentally manipulable setting. As we prove analytically
and numerically, the coupling-strength autonomy property is

useful for models of processes where the coupling strength
can be attributed to one single coefficient, while for other
cases we suggest modifications of MIT as more appropriate
measures. Compared to TE, our MIT has the advantage of
being practically computable without the need for arbitrary
truncations. Besides our example from climatology, also in
other fields of science our two-step approach promises to
not only extract the causal direct (rather than the indirect)
connectivity among processes, but also to assess a meaningful
coupling strength, that—together with the coupling delay—
assists a physical interpretation.
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APPENDIX

Here we give the proofs of the inequality relation among
MIT, ITX, and ITY in Eq. (12), the coupling-strength auton-
omy theorem, and further discussions regarding the property of
coupling-strength autonomy for processes violating linearity
condition (2).

1. Proof of inequality relation Eq. (12)

The MIT IMIT
X→Y (τ ) ≡ I (Xt−τ ; Yt |PYt

\{Xt−τ },PXt−τ
) be-

tween two uni- or multivariate subcomponents X,Y of a
stationary multivariate discrete-time stochastic process X with
time-series graph G and parents P , as defined in the main
article, is bounded by the two CMIs with condition on either
parents [Eq. (12)]

I
(
Xt−τ ; Yt

∣∣PXt−τ

)
� IMIT

X→Y (τ ) � I
(
Xt−τ ; Yt

∣∣PYt
\{Xt−τ }

)
,

(A1)

where τ > 0. The right inequality holds for all processes,
sufficing the very general condition (S) in Ref. [18] and the
left inequality if, additionally, the “no sidepath” constraint for
the coupling “Xt−τ → Yt” holds, that is, if Xt−τ is separated
from PYt

\ PXt−τ
by its parents PXt−τ

in the time-series graph.
For a definition of separation see Ref. [18].

To prove the right inequality, let P̃Xt−τ
be the set of

parents of Xt−τ that is not already included in PYt
, i.e.,

P̃Xt−τ
= PXt−τ

\PYt
. It then holds that I (P̃Xt−τ

; Yt |PYt
) = 0

because the parents PYt
separate Yt from any subset of X−

t \PYt

and separation in the time-series graph implies conditional
independence between the subprocesses [18], Theorem 4.1].
We now apply the chain rule on the (multivariate) CMI
I (Xt−τ ,P̃Xt−τ

; Yt |PYt
\{Xt−τ }) twice,

I
(
Xt−τ ,P̃Xt−τ

; Yt

∣∣PYt
\{Xt−τ }

)
= I

(
Xt−τ ; Yt |PYt

\{Xt−τ }
)+ I

(
P̃Xt−τ

; Yt

∣∣PYt

)︸ ︷︷ ︸
=0
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= I
(
P̃Xt−τ

; Yt

∣∣PYt
\{Xt−τ }

)︸ ︷︷ ︸
�0

+ I
(
Xt−τ ; Yt |PYt

\{Xt−τ },P̃Xt−τ

)
⇒ I

(
Xt−τ ; Yt

∣∣PYt
\{Xt−τ },PXt−τ

)
� I

(
Xt−τ ; Yt

∣∣PYt
\{Xt−τ }

)
.

Note, that (conditional) mutual information is always non-
negative.

For the left inequality we now define P̃Yt
to be the set

of parents of Yt that is not already included in PXt−τ
, i.e.,

P̃Yt
= PYt

\PXt−τ
. Then, under the “no sidepath” constraint, it

holds that I (P̃Yt
\{Xt−τ }; Xt−τ |PXt−τ

) = 0. Note that all paths
emanating from Xt−τ towards the past are surely blocked by
PXt−τ

because they contain the motifs “→ Zt−τ ′ → Xt−τ ” or
“−Zt−τ ′ → Xt−τ ,” which are both blocked as Zt−τ ′ ∈ PXt−τ

.
The “no sidepath” constraint further demands that there are
no unblocked paths to P̃Yt

emanating towards the present or
future. Again, we apply the chain rule on the (multivariate)
CMI I (Xt−τ ; Yt ,P̃Yt

\{Xt−τ }|PXt−τ
) twice,

I
(
Xt−τ ; Yt ,P̃Yt

\{Xt−τ }
∣∣PXt−τ

)
= I

(
Xt−τ ; Yt

∣∣PXt−τ

)+ I
(
Xt−τ ; P̃Yt

\{Xt−τ }
∣∣PXt−τ

,Yt

)︸ ︷︷ ︸
�0

= I
(
P̃Yt

\{Xt−τ }; Xt−τ

∣∣PXt−τ

)︸ ︷︷ ︸
=0

+ I
(
Xt−τ ; Yt

∣∣P̃Yt
\{Xt−τ },PXt−τ

)
⇒ I

(
Xt−τ ; Yt

∣∣PYt
\{Xt−τ },PXt−τ

)
� I

(
Xt−τ ; Yt |PXt−τ

)
.

2. Derivations for analytical model Eq. (13)

Defining variances and covariances by

�ij (τ ) ≡ E
[
Xi

t+τ Xj
t

]
, (A2)

for model Eq. (13) the variances are

�X = σ 2
X

1−a2
X

,

�Z = c2
XZ�X + σ 2

Z,

�W = σ 2
W,

�Y = c2
XY �X + c2

WY �W + σ 2
Y .

Further, autocovariances are

�XX(τ ) = a
|τ |
X �X,

�YY (τ ) = cXY �XX(τ ),

�ZZ(τ ) = cXZ�XX(τ ),

�WW (τ ) = 0,

with �XX(τ = 0) ≡ �X. The covariances for τ � 0 are given
by

�YX(τ ) = cXY �XX(τ − 2),

�XY (τ ) = aXcXY �XX(τ + 1),

�ZX(τ ) = cXZ�XX(τ − 1),

�XZ(τ ) = aXcXZ�XX(τ ),

�XW (τ ) = �WX(τ ) = 0,

�ZY (τ ) = cXY cXZ�XX(τ + 1),

�YZ(τ ) = cXY cXZ�XX(τ − 1),

�ZW (τ ) = �WZ(τ ) = 0,

�YW (τ ) = cWY δ(τ − 1)�W,

�YW (τ ) = 0,

with the Kronecker δ δ(s) = 1 for s = 0 and δ = 0 otherwise.
These covariances form the entries of the covariance matrices
that are needed to compute the conditional entropies.

a. Derivations of TE

For the derivation of TE,

ITE
X→Y = H (Yt |Y−

t ,W−
t ,Z−

t ) − H (Yt |X−
t Y−

t ,W−
t ,Z−

t ),

we know from Markov properties that the latter term is the
source entropy H (Yt |PYt

) = 1
2 ln 2πeσ 2

Y . For the first entropy

H (Yt |Y−
t ,W−

t ,Z−
t ) = 1

2
ln

(
2πe

|�YtY
−
t W−

t Z−
t
|

|�Y−
t W−

t Z−
t
|

)
(A3)

we can write the covariance as a block matrix

�YtY
−
t W−

t Z−
t

=

⎛
⎜⎜⎜⎜⎝

�Yt
�Yt ;Y

−
t

�Yt ;W
−
t

�Yt ;Z
−
t

��
Yt ;Y

−
t

�Y−
t

�Y−
t ;W−

t
�Y−

t ;Z−
t

��
Yt ;W

−
t

��
Y−

t ;W−
t

�W−
t

�W−
t ;Z−

t

��
Yt ;Z

−
t

��
Y−

t ;Z−
t

��
W−

t ;Z−
t

�Z−
t

⎞
⎟⎟⎟⎟⎠ ,

(A4)

where, e.g., �Yt ;W
−
t

is an infinite vector with entries of the
covariances of Yt with Wt−1,Wt−2, . . ., and

�Y−
t ;W−

t
≡

⎛
⎜⎜⎝

�YW (0) �YW (1) . . .

�WY (1) �YW (0) . . .

...
...

. . .

⎞
⎟⎟⎠ .

The quotient in Eq. (A3) of these infinite-dimensional matrices
is difficult, if not impossible, to evaluate in the general case.
Here, we will consider only two simple cases.

a. cXZ = cWY = 0. For the case of cXZ = cWY = 0, i.e., as
inputs solely an autodependency in X, the covariance matrix
takes the simple form

�YtY
−
t W−

t Z−
t

=

⎛
⎜⎜⎜⎝

�Yt
�Yt ;Y

−
t

0 0

��
Yt ;Y

−
t

�Y−
t

0 0

0 0 �W−
t

0

0 0 0 �Z−
t

⎞
⎟⎟⎟⎠ , (A5)

where the top left block is an infinite-dimensional Toeplitz
matrix, i.e., a Toeplitz operator. The quotient in Eq. (A3) then
can be simplified to∣∣�YtY

−
t

∣∣∣∣�W−
t Z−

t

∣∣∣∣�Y−
t

∣∣∣∣�W−
t Z−

t

∣∣ =
∣∣�YtY

−
t

∣∣∣∣�Y−
t

∣∣ , (A6)

where �YtY
−
t

and �Y−
t

are the symmetric Toeplitz matrices
Gτ and Gτ−1 with diagonal elements �Y and off-diagonal
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elements gτ ,

g0 = �Y = c2
XY

σ 2
X

1 − a2
X

+ σ 2
Y , (A7)

gτ = a
|τ |
X

c2
XY σ 2

X

1 − a2
X

, for τ � 1. (A8)

The desired TE is then given by

ITE
X→Y = lim

τ→∞
1

2
ln

1

σ 2
Y

|Gτ |
|Gτ−1| . (A9)

To obtain the limit of the ratio of Toeplitz matrices we can
utilize Szegö’s theorem [22,23], which relates the limit to the
geometric mean of a function f (λ),

lim
τ→∞

|Gτ (f )|
|Gτ−1(f )| = exp

[
1

2π

∫ 2π

0
ln f (λ)dλ

]
, (A10)

which requires that the Toeplitz matrix is in the Wiener
class, i.e., the entries must be absolutely summable, which
we assume here. The function f (λ) is the Fourier series with
the entries of the Toeplitz matrix being the coefficients

f (λ)=
∞∑

τ=−∞
gτ e

iτλ = �Y + 2
∞∑

τ=1

gτ e
iτλ, (A11)

= c2
XY

σ 2
X

1 − a2
X

+ σ 2
Y + 2

c2
XY σ 2

X

1 − a2
X

∞∑
τ=1

a
|τ |
X eiτλ

︸ ︷︷ ︸
aXeiλ

1−aXeiλ

, (A12)

=

α︷ ︸︸ ︷[
c2
XY σ 2

X − σ 2
Y

(
1 − a2

X

)]
aX eiλ+

β︷ ︸︸ ︷
c2
XY σ 2

X + σ 2
Y

(
1 − a2

X

)(
1 − a2

X

)
(1 − aXeiλ)

,

(A13)

with α < β for |aX| < 1. The TE then is

ITE
X→Y = lim

τ→∞
1

2
ln

1

σ 2
Y

|Gτ |
|Gτ−1|

= lim
τ→∞

1

2
ln

|Gτ |
|Gτ−1| − 1

2
ln σ 2

Y , (A14)

= 1

2
ln lim

τ→∞
|Gτ |

|Gτ−1| − 1

2
ln σ 2

Y , (A15)

= 1

2
ln exp

[
1

2π

∫ 2π

0
ln f (λ)dλ

]
− 1

2
ln σ 2

Y , (A16)

= 1

4π

∫ 2π

0
ln f (λ)dλ − 1

2
ln σ 2

Y , (A17)

= 1

4π

⎡
⎢⎢⎢⎣
∫ 2π

0
ln(αeiλ + β)dλ︸ ︷︷ ︸

(�)

− ln(1 − a2
X)
∫ 2π

0
dλ︸ ︷︷ ︸

2π

−
∫ 2π

0
ln(1 − aXeiλ)dλ︸ ︷︷ ︸

(��)

⎤
⎥⎥⎥⎦− 1

2
ln σ 2

Y , (A18)

where the integrals (�) and (��) can be evaluated using contour
integration to

(�) = 2π ln β = 2π ln
[
c2
XY σ 2

X + σ 2
Y

(
1−a2

X

)]
for α � β,

(A19)

(��) = 2π ln 1 = 0 for aX � 1. (A20)

The TE is, thus,

ITE
X→Y = 1

2
ln

[
1 +

(
c2
XY σ 2

X

)/(
1 − a2

X

)
σ 2

Y

]
(A21)

and depends on the autodependency strength of X.
b. aX = 0. Now the process “decouples in time” since no

autodependencies are present. The covariance matrix is

�YtY
−
t W−

t Z−
t

=

⎛
⎜⎜⎜⎜⎝

�Yt
0 �Yt ;W

−
t

�Yt ;Z
−
t

0 �Y−
t

�Y−
t ;W−

t
�Y−

t ;Z−
t

��
Yt ;W

−
t

��
Y−

t ;W−
t

�W−
t

0

��
Yt ;Z

−
t

��
Y−

t ;Z−
t

0 �Z−
t

⎞
⎟⎟⎟⎟⎠ ,

(A22)

with the blocks being

�Yt
= c2

WY σ 2
W + c2

XY σ 2
X + σ 2

Y ,

�Yt ;W
−
t

= (
cWY σ 2

W,0,0, . . .
)
,

�Yt ;Z
−
t

= (
cXY cXZσ 2

X,0,0, . . .
)
,

�Y−
t

= (
c2
WY σ 2

W + c2
XY σ 2

X + σ 2
Y

)
I,

�Y−
t ;W−

t
= cWY σ 2

WS,

�Y−
t ;Z−

t
= cXY cXZσ 2

XS,

�W−
t

= σ 2
W I,

�Z−
t

= (
c2
XZσ 2

X + σ 2
Z

)
I,

where I is the identity matrix and S is the shift matrix with
ones on the superdiagonal, i.e., the first upper off-diagonal,
and zeros everywhere else. The quotient in Eq. (A3) can be
simplified by expressing the block matrix in terms of the Schur
complement of the covariance block �Y−

t W−
t Z−

t∣∣�YtY
−
t W−

t Z−
t

∣∣∣∣�Y−
t W−

t Z−
t

∣∣
=

∣∣∣∣∣∣∣�Yt
− (

�Yt ;Y
−
t
,�Yt ;W

−
t
,�Yt ;Z

−
t

)(
�Y−

t W−
t Z−

t

)−1

⎛
⎜⎝

��
Yt ;Y

−
t

��
Yt ;W

−
t

��
Yt ;Z

−
t

⎞
⎟⎠
∣∣∣∣∣∣∣ .

(A23)

Since the vector (�Yt ;Y
−
t
,�Yt ;W

−
t
,�Yt ;Z

−
t

) contains only two
nonzero elements, we do not have to take the infinite limit
and do not need to invert the whole matrix �Y−

t W−
t Z−

t
. A simple

calculation yields∣∣�YtY
−
t W−

t Z−
t

∣∣∣∣�Y−
t W−

t Z−
t

∣∣ = c2
WY σ 2

W + c2
XY σ 2

X + σ 2
Y

− c2
WY σ 4

W

σ 2
W

− c2
XY c2

XZσ 4
X

c2
XZσ 2

X + σ 2
Z

, (A24)
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from which we get

ITE
X→Y = 1

2
ln

[
1 + c2

XY σ 2
Xσ 2

Z

σ 2
Y

(
c2
XZσ 2

X + σ 2
Z

)
]

. (A25)

Here, the TE depends on the coupling strength of X with
Z, which seems rather unintuitive. This formula could have
also been derived by exploiting separation properties of the
corresponding time-series graph (i.e., Markov properties of
the process), from which a much smaller set of conditions can
be inferred.

b. MIT and related measures

The measures based on the parental sets are much easier
to derive because they involve only finite and very low
dimensional covariance matrices. As an example, for the
entropy H (Yt |Wt−1,Xt−3) needed to compute the MIT, the
covariance matrix of (Yt ,Wt−1,Xt−3) is⎛

⎜⎜⎝
c2
WY σ 2

W + c2
XY σ 2

X

1−a2
X

+ σ 2
Y cWY σ 2

W

aXcXY σ 2
X

1−a2
X

cWY σ 2
W σ 2

W 0
aXcXY σ 2

X

1−a2
X

0 σ 2
X

1−a2
X

⎞
⎟⎟⎠ . (A26)

3. Proof of the coupling-strength autonomy theorem

To compute MIT,

IMIT
X→Y (τ ) ≡ I

(
Xt−τ ; Yt

∣∣PYt
\{Xt−τ },PXt−τ

)
= H

(
Yt |PYt

\{Xt−τ },PXt−τ

)− H
(
Yt

∣∣PYt

)
,

we need the source entropy H (Yt |PYt
) and the conditional

entropy H (Yt |PYt
\{Xt−τ },PXt−τ

). For the following steps we,
first, use the independence of the i.i.d. variables ηX

t−τ and ηY
t

of processes in the past, i.e., I (ηY
t ; X−

t ) = 0, and, further, due
to the data processing inequality [4], also

I
(
ηY

t ; f̃
(
X−

t

)) = 0 (A27)

and, correspondingly, I (ηX
t−τ ; g̃(X−

t−τ )) = 0 for arbitrary func-
tions f̃ , g̃. This implies in particular I (ηY

t ; f̃ (PYt
)) = 0 and

I (ηX
t−τ ; g̃(PXt−τ

)) = 0. Second, we use that generally for
random variables Y and W and an arbitrary function f ,

H (Y + f (W )|W ) =
∫

p(w)H (Y + f (W )|W = w)dw

=
∫

p(w)H (Y |W = w)dw

= H (Y |W ), (A28)

because f (W ) for W = w is a fixed constant and entropies are
translationally invariant.

Then, for f̃ (PYt
) = f (Xt−τ ) + gY (PYt

\{Xt−τ }), the source
entropy is

H
(
Yt

∣∣PYt

) = H
(
f̃
(
PYt

)+ ηY
t

∣∣PYt

)
, (A29)

= H
(
ηY

t

∣∣PYt

)
, (A30)

= H
(
ηY

t

)
, (A31)

and depends only on the distribution of the source process ηY
t .

This relation holds generally if Yt additively depends on its
parents.

Next, to compute the other conditional entropy, we insert
Eq. (33) in (34) and get

H
(
f
[
ηX

t−τ + gX

(
PXt−τ

)]
+ gY

(
PYt

\{Xt−τ }
)+ ηY

t

∣∣PYt
\{Xt−τ },PXt−τ

)
= H

(
f
[
ηX

t−τ + gX

(
PXt−τ

)]+ ηY
t

∣∣PYt
\{Xt−τ },PXt−τ

)
,

(A32)

also due to translational invariance. If we only as-
sume condition (1), this relation cannot be much further
simplified.

To arrive at a CMI again, we need to expand the source
entropy using Eqs. (A28) and (A27). First, we add the same
conditions as in Eq. (A32), which is possible since ηY

t is
independent of all past processes,

H
(
ηY

t

) = H
(
ηY

t

∣∣PYt
\{Xt−τ },PXt−τ

)
. (A33)

Next, we insert the term f [ηX
t−τ + gX(PXt−τ

)] and “condition
it out again” using Eq. (A28) by adding ηX

t−τ to the conditions
(PXt−τ

is already included),

H
(
ηY

t

) = H
(
ηY

t

∣∣PYt
\{Xt−τ },PXt−τ

)
= H

(
f
[
ηX

t−τ + gX

(
PXt−τ

)]
+ ηY

t

∣∣PYt
\{Xt−τ },PXt−τ

,ηX
t−τ

)
. (A34)

Then, via

IMIT
X→Y (τ )

= H
(
f
[
ηX

t−τ + gX

(
PXt−τ

)]+ ηY
t

∣∣PYt
\{Xt−τ },PXt−τ

)
−H

(
f
[
ηX

t−τ + gX

(
PXt−τ

)]
+ ηY

t

∣∣PYt
\{Xt−τ },PXt−τ

,ηX
t−τ

)
,

we arrive at Eq. (38).
If we assume conditions (1) and (2), we can further simplify

Eq. (A32) since f (ηX
t−τ + gX(PXt−τ

)) = cηX
t−τ + cgX(PXt−τ

)
and therefore

H
(
cηX

t−τ + cgX

(
PXt−τ

)+ ηY
t

∣∣PYt
\{Xt−τ },PXt−τ

)
= H

(
cηX

t−τ + ηY
t

∣∣PYt
\{Xt−τ }

)
, (A35)

where we used Eq. (A28) and the fact that I (cηX
t−τ + ηY

t ;
PXt−τ

|PYt
\{Xt−τ }) = 0 (also holds without the condition on

PYt
\{Xt−τ } because PXt−τ

lies in the past of both ηX
t−τ and ηY

t ).
Extending the source entropy again we arrive at Eq. (37). If the
“sidepath”-parents are additively separated from the remaining
parents, MIT can be further simplified.

If, additionally, condition (3) holds, then Eq. (35) leads
to I (cηX

t + ηY
t ;PYt

\{Xt−τ }) = 0, and we, therefore, can drop
PYt

\{Xt−τ } from the conditions from which Eq. (36) follows.
For the contemporaneous MIT,

IMIT
X−Y ≡ I

(
Xt ; Yt

∣∣PYt
,PXt

,NXt
\{Yt },NYt

\{Xt },
P
(
NXt

\{Yt }
)
,P
(
NYt

\{Xt }
))

,
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we only need condition (1), for which the entropy in the first
term is

H
(
ηY

t + gY

(
PYt

)∣∣PYt
,PXt

,NXt
\{Yt },NYt

\{Xt },
P
(
NXt

\{Yt }
)
,P
(
NYt

\{Xt }
))

(A36)

= H
(
ηY

t

∣∣PYt
,PXt

,NXt
\{Yt },NYt

\{Xt },
P
(
NXt

\{Yt }
)
,P(NYt

\{Xt }
))

(A37)

= H
(
ηY

t

∣∣NXt
\{Yt },NYt

\{Xt }
)
, (A38)

again due to translational invariance of entropy [Eq. (A28)]
and the independence of ηY

t of past processes [Eq. (A27)]. For
the same reasons, the entropy in the second term becomes

H
(
ηY

t + gY

(
PYt

)∣∣PYt
,PXt

,NXt
\{Yt },NYt

\{Xt },
P(NXt

\{Yt }
)
,P
(
NYt

\{Xt }
)
,Xt

)
= H

(
ηY

t

∣∣PYt
,PXt

,NXt
\{Yt },NYt

\{Xt },
P
(
NXt

\{Yt }
)
,P
(
NYt

\{Xt }
)
,ηX

t + gX

(
PXt

))
= H

(
ηY

t

∣∣NXt
\{Yt },NYt

\{Xt },ηX
t

)
, (A39)

because knowing ηX
t + gX(PXt

) and PXt
is equivalent to

knowing ηX
t and PXt

. Equation (39) then follows, which
finishes the proof.

Similarly, MITS and MITN can be simplified if the
dependency gY is additive in the parents.

4. Further numerical experiments

In Fig. 6 we show results of our numerical experiments
for the model class Eq. (46) with a nonlinear dependency
f (x) = x2 of the link “Xt−2 → Yt” using the same ensemble
setup E as before. As discussed in Sec. V, the source process
ηX

t−τ then mixes with its parents and it does not make sense to
attribute the coupling strength to one single coefficient. As a
result, the average of MIT in Fig. 6(a) tends to larger values for
increased aX = cZX; thus, the inputs are not entirely “filtered
out.” Still, MIT is much less affected than MI.

Regarding the inequality relation Eq. (12), a nonlinear
dependency does not affect at least the right side IMIT

X→Y (τ ) �
I ITY
X→Y (τ ) as demonstrated in Figs. 6(a) and 6(b). Although

the left side of the inequality relation I ITX
X→Y (τ ) � IMIT

X→Y (τ )
should hold under the same general condition (S) in Ref. [18]
and the “no sidepath” constraint, it seems to be violated for
large aX = cZX (and small aY = cWY ). This could be related
to highly skewed distributions for nonlinear f (x).

(a)

(b)

FIG. 6. (Color online) Numerical experiments with the model
Eq. (46) with the setup as before but for squared dependency
f (x) = x2 with cXY = 0.6.

In the bottom plot of Fig. 6(a) it might seem that TE and
LINK are less affected, but, actually, the relative variance is
much higher.
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