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Chapter 3
Teleconnections in Climate Networks:
A Network-of-Networks Approach to Investigate
the Influence of Sea Surface Temperature
Variability on Monsoon Systems

Aljoscha Rheinwalt, Bedartha Goswami, Niklas Boers, Jobst Heitzig, Norbert
Marwan, R. Krishnan, and Jürgen Kurths

Abstract We analyze large-scale interdependencies between sea surface
temperature (SST) and rainfall variability. We propose a novel climate network
construction scheme which we call teleconnection climate networks (TCN). On
account of this analysis, gridded SST and rainfall data sets are coarse grained
by merging grid points that are dynamically similar to each other. The resulting
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24 A. Rheinwalt et al.

clusters of time series are taken as the nodes of the TCN. The SST and rainfall
systems are investigated as two separate climate networks, and teleconnections
within the individual climate networks are studied with special focus on dipolar
patterns. Our analysis reveals a pronounced rainfall dipole between Southeast Asia
and the Afghanistan-Pakistan region, and we discuss the influences of Pacific SST
anomalies on this dipole.

Keywords Clustering • Precipitation dipole • Teleconnections • Complex
networks • Time series analysis

3.1 Introduction

Precipitation on the Asian continent is known to be influenced by large-scale
atmospheric processes like the Hadley and Walker circulation. However, the
intricate interplay of different atmospheric processes and how they influence
precipitation variability are still not completely understood. Here, we study long-
range interrelations within the precipitation system as well as between precipitation
and sea surface temperature (SST) dynamics. Our aim is to shed light on the spatial
structure of such teleconnections, with a special focus on precipitation dipoles and
how they are influenced by SST variability.

For this purpose, we employ the climate network approach by representing the
interrelations between climatic time series as complex networks (Boers et al. 2013,
2014; Donges et al. 2009a,b; Ebert-Uphoff and Deng 2012; Malik et al. 2012;
Tsonis and Roebber 2004; Tsonis et al. 2006; Yamasaki et al. 2008). The SST and
the precipitation system are studied as two separate networks and the interrelations
between them by their cross topology.

So far, empirical orthogonal functions (EOFs), which are derived from principal
component analysis of covariance matrices, are commonly used for a spatial
analysis of teleconnections in climatological data (Ghil et al. 2002). While certainly
very useful in many situations, they carry certain caveats in such analyses: First,
if the data are not normally distributed, the corresponding EOFs will in general,
while uncorrelated, not be statistically independent (Monahan et al. 2009). Second,
even if they are independent, EOFs do not necessarily uniquely correspond to
climatological mechanisms (Dommenget and Latif 2002). Third, and maybe most
importantly, analyses based on the covariance matrix will only be able to capture
linear dependencies. This might be considered insufficient in view of the strong
nonlinearities involved in climatic interactions. Climate network can be considered
as a complementary approach to study spatial patterns of climatic interrelations,
which do not suffer from these statistical problems if derived from a nonlinear
similarity measure. Furthermore, since teleconnections are not directly represented
as links in EOFs, they have to be deduced from the spatial patterns. Although this
might be possible for simple teleconnection structures, it becomes challenging for
more complicated ones.

Nonetheless, the common way of climate network construction is not suitable for
the investigation of teleconnections as well. There, traditionally a pairwise similarity
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3 Teleconnections in Climate Networks 25

analysis between all pairs of time series is performed, for instance, by the use of
Pearson’s correlation coefficient (Donges et al. 2009b; Tsonis et al. 2006). However,
climate networks are spatially embedded networks, and the similarity between time
series is strongly dependent on their spatial distance (Rheinwalt et al. 2012): Two
time series that are spatially close to each other are likely to be more similar than
two time series which are far away from each other in space. By focusing only
on strong similarities as in most climate network studies, networks have essentially
only short links, which led to the investigation of paths in climate networks (Donges
et al. 2009a).

Here we propose an approach that groups all time series by similarity into
clusters. A related idea was also pursued in Hlinka et al. (2014). We use a specific
clustering scheme that typically provides spatially connected clusters due to the
distance dependence of the similarities in climate systems. In other words, these
clusters are localized regions of high resemblance according to the dynamics of the
corresponding time series. Each cluster will in our approach be represented by a
single time series, and only the similarity structure between these representatives
will be explored. By doing so we do not only reduce the dimensionality of the
network, but we more importantly constructed a climate network that is reduced
to its teleconnections. We will refer to these networks as teleconnection climate
networks (TCN).

3.2 Method

In order to group time series by similarity, we use the standard fast greedy hierarchi-
cal agglomerative complete linkage clustering (Defays 1977). This clustering is per-
formed in a metric space with dissimilarities between time series as distances. In this
study we focus on the Spearman’s rho correlation coefficient as the similarity mea-
sure in order to capture not only linear but also other monotonic relationships and
in order to avoid problems of skewed distributions in precipitation data. In our case
of standardized anomalies that have zero mean and unit variance, this coefficient is
proportional to the dot product between the ranked variables and can be interpreted
as the cosine of the angle & between these two ranked variables. More precisely, the
Spearman’s rho %X;Y between two ranked time series X and Y is given by

!X;Y D Cov.X;Y/
"X"Y

& X $ Y
kXk kYk D cos.&X;Y/ : (3.1)

This angle & in radians between two time series is a distance that we use as the
dissimilarity measure for the clustering.

Statistical significance of Spearman’s rho values is estimated using twin surro-
gates.1 These carry the advantage of preserving dynamical features of the original

1Due to the short length of time series we obtain the twin surrogates without embedding.
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time series in contrast to bootstrappingmethods (Marwan et al. 2007; Romano et al.
2009; Thiel et al. 2006, 2008). For each pair of time series, we test against the null
hypothesis that they are independent realizations of the same dynamical system.
Upon repeating this for all pairs of time series, we pick the maximum threshold
corresponding to the 98% confidence level as a global significance threshold
T0:98.%/.

We intend to group time series into clusters in such a way that all correlation
values between time series within a given cluster are statistically significant. This is
achieved by the use of the complete linkage clustering scheme that is also known as
farthest neighbor clustering. The distance measure between two clusters U and V is
in this scheme defined as

D.U;V/ D max
X2U;Y2V

d.X;Y/ D max
X2U;Y2V

&X;Y : (3.2)

We cut the resulting dendrogram at the distance dcrit that corresponds to the sig-
nificance threshold of all pairwise correlation values, i.e., dcrit D arccos.T0:98.!//.
This yields the maximum number of partitions of the set of time series such that
for any two clusters U and V holds, D.U;V/ ' dcrit, which is the same as the
minimum number of partitions such that for any two time series X;Y 2 U in any
given cluster U, we have &X;Y < dcrit. This clustering method does not only assure
that all time series within a cluster are significantly correlated when cutting the
dendrogram at dcrit but also avoids the chaining phenomenon of the single linkage
clustering where a set of time series might form a cluster although only a few time
series are actually close to each other (Everitt et al. 2001). The clustering reduces
the dimensionality of the problem by merging dynamically similar time series into
clusters, which will serve as nodes for the teleconnection climate networks (TCN)
that will be constructed in the following.

More specifically, a TCN node is represented by a single time series from the
corresponding cluster. Although there are clustering schemes, such as the k-means
clustering (MacQueen et al. 1967), that suggest a certain member of a cluster
as a representative, the in this study anticipated complete linkage clustering does
not. Also, since cluster sizes vary, special care has to be taken when choosing a
representative time series for a cluster. For instance, the point-wise mean of all time
series within a cluster would be influenced by the size of the cluster. Instead we pick
the time series with the highest average correlation to all other time series within
that cluster as a representative for that cluster. This also has the advantage that the
representative time series retain the original variabilities.

The TCN is now constructed by computing % for all pairs of representative time
series and assigning the corresponding values as link weights. We remove all links
from the TCN that have a weight equal or below T0:98.%/.

We note that TCN could as well be studied using node-weighted network
measures (Heitzig et al. 2012; Wiedermann et al. 2013). Although not a focus of
this study, this is an interesting topic of future research.
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3 Teleconnections in Climate Networks 27

3.3 Application

We apply the proposed methodology to precipitation data for the Asian continent
together with a global SST data set. We will in the following investigate dipole
structures in the precipitation system and how these dipoles are influenced by SST
variability.

3.3.1 Data

We use monthly time series for the years 1982–2008: SST data is obtained from
the NOAA Optimum Interpolation SST V2 on a one-by-one-degree grid (Reynolds
et al. 2002), and precipitation data over land is taken from the APHRODITE V1101
daily precipitation data product on a 0:25 ! 0:25 degree grid (Yatagai et al. 2012).
In the latter data set, monthly mean values were calculated from daily values in a
preprocessing step. We study monthly anomalies, in contrast to the monthly mean
values itself, where the seasonal cycle would dominate correlation coefficients.
Anomalies are calculated by subtracting from each value the long-term mean for
that month and dividing by the corresponding long-term standard deviation.

3.3.2 Coarse Graining

Based on the significance tests explained above, we obtain significance thresholds
T0:98.%/ D 0:199 for the precipitation data set and T0:98.%/ D 0:494 for the SST
data set. Hence, we cut the Asian precipitation dendrogram at % D 0:2. This leads to
111 precipitation clusters which are shown in Fig. 3.1. The geographical location of
representative time series is depicted as black dots. With an initial number of 31624
time series, the coarse graining reduces the number of time series by a factor of (
285. While the minimum correlation within clusters is 0:2, the average correlation
within a cluster has a much higher value of 0:7.

We cut the global SST dendrogram at a threshold of % D 0:5. This leads to 1419
SST clusters as shown in Fig. 3.2. With an initial number of 40780 SST time series,
the coarse graining reduces the number of time series only by a factor of (29. This
lower reduction is due to the relatively coarser spatial resolution of the SST data
set. The correlation coefficient between SST time series within a cluster is, with an
average value of 0:8, even higher than for the precipitation clustering.

3.3.3 Dipoles

In order to focus on precipitation dipoles, we reduce the precipitation TCN by
removing all nodes that do not even have a single significant link with a negative link
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Fig. 3.1 Clustering of the precipitation data using the arccosine of the Spearman’s rank correlation
as a distance metric. All time series within a cluster are significantly correlated to each other. This
corresponds to a minimum correlation of 0:2 between time series within a cluster. However, the
average correlation within a cluster is on average 0:7. Geographical locations of representative time
series for clusters are depicted as black dots

weight. Note that we understand dipoles as anticorrelations between representative
time series. The resulting network reflects the dipole structure that is captured from
the APHRODITE data set for the considered time period. It consists of only 36
anticorrelation links (red) and 83 correlation links (blue) (see Fig. 3.3).

3.3.4 Networks of Climate Networks

Given the two sets of representative time series for the precipitation data set as
well as for the SST data set, we estimate all pairwise lagged correlation coefficients
between these two sets. We consider possibly lagged correlation, because telecon-
nections between Asian precipitation and the global SST field can in general occur
with a delay even on monthly scales. We employ a simple maximum correlation
approach as follows. We focus on the influence of SST variability on precipitation
and thus only consider lags that correspond to SST dynamics preceding precipitation
dynamics, where we consider only lags up to 12 month. As link weights we take the
first local maximum of Spearman’s rho over this range of lags. A similar approach
was taken, for example, in Yamasaki et al. (2008).
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Fig. 3.2 Clustering of the SST data using the arccosine of the Spearman’s rank correlation as a
distance metric. All time series within a cluster are significantly correlated to each other, which
corresponds to a minimum correlation of 0:5 between time series within a cluster. The average
correlation within a cluster is on average 0:8. Geographical locations of representative time series
for clusters are depicted as black dots

In order to understand the influence of SST variability on the obtained Asian
precipitation dipole, we examine cross-links of nodes from the Southeast Asian
pole (see Fig. 3.3). All the nodes in this region, marked as yellow dots in Fig. 3.4,
experience a spatially very similar influence from the SST network (not shown).
Thus, we show the mean correlation from the SST network to these precipitation
nodes (see Fig. 3.4).

3.4 Results and Discussion

Using the proposed method of TCN construction, we find a strikingly pronounced
precipitation dipole between the Southeast Asian region and the Afghanistan-
Pakistan region. This dipole has, for example, been described in Barlow et al.
(2005). In that study, the authors partly explain its occurrence by an interplay of
the Madden-Julian oscillation and the African-Arabian jet stream. Furthermore, this
dipolar pattern is most likely related to the lateral component of the Asian monsoon
system (Trenberth et al. 2000; Webster et al. 1998, 1999).

The Southeast Asian region, in the precipitation network represented by nodes
marked as yellow dots in Fig. 3.4, is a major deep convection area of the considered
precipitation network. Convection is forced by solar heating and forms a rising
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Fig. 3.3 The precipitation TCN reduced to nodes that have significant anticorrelations (red links)
and correlations (blue links) to other representative precipitation time series. Link thickness
is proportional to absolute link weight. Links are drawn between geographical positions of
representative time series, and the corresponding clusters are colored. Observe the pronounced
precipitation dipole between Southeast Asia and the Afghanistan-Pakistan region

branch of the Hadley cell in this area but is also modulated by theWalker circulation
(Gill 1980). This modulating effect explains the negative correlation values between
precipitation in the Southeast Asian region and SST anomalies in the eastern
central tropical Pacific observed in Fig. 3.4: The Walker circulation causes upward
atmospheric motion at the western boundary of the tropical Pacific and downward
motion at the eastern boundary. If the Walker circulation weakens as under El Niño
conditions, convection is suppressed in the Southeast Asian region, resulting in
reduced precipitation. At the same time, upwelling of cold water in the eastern
Pacific ocean is reduced, which causes positive SST anomalies in the eastern and
central tropical Pacific. Correspondingly, a strengthened Walker circulation causes
stronger convection in the Southeast Asian region and negative SST anomalies in
the eastern and central tropical Pacific.

On the other hand, we also observe a V-shaped pattern of positive correlation
values in Fig. 3.4, with two branches extending to the subtropics. These two
branches follow the climatological orientation of the trade winds in this region, and
we suggest the following explanation for this pattern: Since the specific humidity
of the low-level atmosphere rises with temperature, and the air temperature is
in turn coupled to the SSTs, air parcels arriving at the Southeast Asian region

aljoscha@pik-potsdam.de



3 Teleconnections in Climate Networks 31

Fig. 3.4 Mean correlation between monthly precipitation anomalies in the Southeast Asian pole
of the dipole (yellow dots) to the global SST field. Observe the negative (red) mean correlation
values between this pole and the SSTs in the tropical central and eastern Pacific, as well as the
positive (blue) mean correlation pattern extending from the pole to the subtropics

will carry the more (less) moisture the warmer (cooler) the SSTs are along the
trajectory of the trade winds from the subtropics. This modulates the water vapor
content of the air that rises in the Southeast Asian region due to the convection
discussed in the last paragraph and hence the amount of precipitation. We note that
this mechanism should also apply to the tropical Pacific, but there, its influence is
strongly overprinted by the Walker circulation.

3.5 Conclusion

We proposed a new framework to construct multivariate climate networks from
observational data. This framework is designed to study long-range interrelations,
i.e., teleconnections, by first merging dynamically similar time series into clusters
and then investigating connections between these clusters. We applied our approach
to SST data as well as precipitation data over the Asian continent and coupled the
two separate networks obtained for each variable to a network of climate networks in
order to study the impacts of SST variability on teleconnections in the precipitation
network. Our analysis reveals a pronounced precipitation dipole between Southeast
Asia and the Afghanistan-Pakistan region, which may be controlled by an interplay
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of the Madden-Julian oscillation, and the African-Arabian jet stream. Results
obtained from the coupled network-of-networks analysis further suggest that trade
winds from the subtropics as well as the Walker circulation over the tropical Pacific
in turn modulate this dipole.
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