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Abstract – In studies of spatially confined networks, network measures can lead to false
conclusions since most measures are boundary affected. This is especially the case if boundaries
are artificial and not inherent in the underlying system of interest (e.g., borders of countries). An
analytical estimation of boundary effects is not trivial due to the complexity of measures. The
straightforward approach we propose here is to use surrogate networks that provide estimates
of boundary effects in graph statistics. This is achieved by using spatially embedded random
networks as surrogates that have approximately the same link probability as a function of spatial
link lengths. The potential of our approach is demonstrated for an analysis of spatial patterns in
characteristics of regional climate networks. As an example networks derived from daily rainfall
data and restricted to the region of Germany are considered.

Copyright c© EPLA, 2012

Introduction. – The study of spatially extended
complex systems is a lively and growing field, for instance
in astrophysics [1], Earth sciences [2], ecology [3], or
medical image analysis [4]. In the last decades, powerful
tools of time series analysis have been proposed and
developed, such as singular spectrum analysis [5], wavelet
analysis [6], recurrence plots [7], etc. For a spatial analysis
various tools are available, such as empirical orthogonal
functions [8], tools adapted from time series analysis such
as spatial recurrence plots [9,10], or complex networks [11].
In many fields of research, complex networks have proven
to be a successful concept for understanding complex
systems, e.g., resilience studies of the Internet [12], trans-
port optimization on street networks, power grids and
supply chain networks [13,14], spread of epidemics within
populations [15–17], relations from structure to function in
brain networks [18–25], and even in the analysis of time
series [26,27]. Recently, network theory has also been uti-
lized in climate research by the so-called climate networks
for understanding complex climate phenomena [28–36].
Many networks are spatial networks. However, the

network structure is often influenced by spatial embedding
due to distance-based costs of links, i.e., the link probabil-
ity depends on the spatial length of links [37–39]. Although
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this effect is usually isotropic, it becomes anisotropic if
boundaries in space are introduced to the network, as
this is the case with the spatial confinement of brain
networks which are embedded in three-dimensional space
and confined by the area of placed electrodes [39]. Climate
networks might be bounded if only a smaller region is
considered [31,40]; similarly, power grids are confined by
the economic region (e.g., by the boundary of the Euro-
pean Network of Transmission System Operators for Elec-
tricity). We also call spatially confined networks regional
networks.
Boundaries cut links which would connect the region

under consideration with the outside region. Obviously,
this artificially reduces node degrees and the amount of
longer links in the remaining network, and hence influences
corresponding network measures. Besides degree, closeness
centrality and shortest-path betweenness [41] are also used
as examples which measure the inverse mean topological
distance from one node to all other network nodes as well
as the number of shortest paths through a given node,
respectively. In this study the closeness centrality of node
j is defined as

CCj =
N∑N
i=1 gji

,
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with N being the number of nodes and the geodesic
distance gji from node j to i. The shortest-path between-
ness of node j is defined as

SBj = log10


1
2

N∑
i,k �=j

σik(j)

σik
+1


 ,

where σik is the number of shortest paths from i to k
and σik(j) are just the ones that pass through j. The
effect of cut links due to boundaries is larger when the
network consists of many long links, as the probability is
high that such links connect the inside and the outside
regions. Where and how strong boundaries affect network
measures depends on the distribution of link lengths and
on the network measures themselves.
Based on the network of interest and its spatial confine-

ment, boundary effects might be negligible, of interest, or
distracting from network structure not imposed by bound-
aries. Neglecting boundary effects can lead to spurious
conclusions, e.g., for the identification of hubs in brain
networks [39]. In many applications, resulting boundary
effects are often not negligible and, consequently, network
measures should be corrected in order to exclude them.
Here we propose a correction procedure for the network

measures derived from a regional network. We will use
a specific random network construction with properties
similar to those in the original network, i.e., it shares a
similar link probability p(∆ik) that two nodes, i and k
that have the distance ∆ik in space, are linked. However
this p(∆) is not the probability to find a link of length ∆
among all. It is the probability conditioned on the number
of possible links of that length due to the embedding of
nodes in space.

Method. – In spatially embedded random networks
(SERN) by Barnett et al. [38], influences of spatial
embedding on network structure are quantified by a link
probability that depends on the spatial length of a link
in the embedding metric space. We propose this as a
model for boundary effects and generate SERN for the
same node positions in space as the original network and
with the same link probability depending on spatial link
lengths. Thus, for a network with boundaries, we consider
the result of a certain network measure on such a SERN
as an estimate of boundary effects in that measure. Hence,
the SERN we use is a surrogate in the sense that it mimics
the same length dependency in the link probability as the
original network has:

– Nodes are embedded in a metric space S with
the metric ∆: S×S→R+; thus, ∆ik is the spatial
distance between node i and k.

– Nodes have been given positions X in S. These
positions are the same as in the original network.

– Nodes i and k are connected with the link probability
p(∆ik) being the probability of finding a link of length
∆ik in the original network in respect to how many
links of that length could occur.

Depending on the positioning of nodes in space, a
binning of spatial link length might be necessary in order
to improve the link probability estimate of the original
network. This can be achieved by rounding spatial link
lengths to appropriate integers so that similar lengths
fall into one integer length. A measurement using such a
procedure can be done with the following algorithm. Here
Ad is the number of possible links with integer length d
and Bd is the number of actually present links with integer
length d. The fraction pd of both is an estimate for the
underlying link probability p(∆).

Ad =Bd = pd = 0 ∀ d∈ rounded∆
for i∈ nodes do
for k < i do
d← rounded∆ik
increase Ad by one
if node i and k are linked in the original network
then
increase Bd by one

end if
end for

end for
p← B

A
.

Link probabilities p for real data derived by this algorithm
can be seen in the application in fig. 4.
To improve the estimation of boundary effects in a

certain network measure, such as closeness centrality, we
average the result of that measure over an ensemble of
surrogates. The reliability of such an estimate is derived
from the distribution of ensemble measures.
If a node-based network measure that returns a value for

each node is used, an estimate of boundary effects can be
found for each node in space. An averaged estimate such as
the median from 1000 surrogates is shown for the closeness
centrality field in fig. 1 (bottom left). As a measure of
reliability for that median we take the interquartile range
per median. Thus, for a fixed number of surrogates we get
a distribution over all nodes of interquartile ranges per
median. The evolution of that distribution with increasing
number of surrogates is visualized in fig. 2. As one can see
we could have used only half as many surrogates and would
have gotten a very similar reliability of our correction. The
corresponding network to the regional closeness (bottom
right) is a ripped-off part of the global network (top left).
Thus, nodes in the regional network are connected if they
are connected in the global network. The global network
is a SERN with the link probability p(∆)∝∆−3.5. The
scales in colorbars go from the minimum to the maximum
value in all figures since we are only interested in relative
quantities.
A corrected network measure is now calculated by

subtracting the estimate of boundary effects for a certain
network measure from the measure on the original
network. The intrinsic spatial bias of the measure due
to the artificial boundary in the regional case (bottom
right) is obviously removed in the corrected measure
(top right).
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Fig. 1: (Color online) Top left: global closeness: closeness centrality of a random network on a sphere. The connection probability
depends only on the spatial link length and follows a power law with the exponent −3.5. Top right: corrected regional
closeness. Arrows point out areas of strong similarity (A) and dissimilarity (B) in the spatial patterns in the considered region.
Bottom left: closeness boundary effects estimate, taken as the median from 1000 surrogates. Bottom right: regional closeness:
closeness centrality on a part of the same network as on the whole globe (top left). Nodes in the depicted region are connected
if they are connected in the global network.

Fig. 2: (Color online) Evolution of surrogate reliability with
increasing number of surrogates for the example shown in fig. 1.
Shown are important quantiles of the distribution of node-wise
interquartile ranges per median. After 400 surrogates reliability
does not improve much further.

Interestingly, too, the spatial structure of the corrected
closeness centrality field resembles the one of the global
network in the corresponding region (fig. 1). Strong
similarities are denoted by A and dissimilarities by B.

Quantitatively the similarity between corrected closeness
centrality and the closeness centrality values in the
corresponding region of the global network can be
expressed by a Spearman’s rank correlation coefficient of
0.661. Respectively, this can be compared to a coefficient
of 0.575 if the uncorrected measure is used. Figure 1 is
just a visual example, thus if we generate an ensemble of
1000 such examples we get the distributions of correlation
coefficients as shown in in fig. 3. The distribution of
coefficients corresponding to the corrected closeness is
not only shifted to higher similarity, but is also narrower.
The difference as well as the absolute value in similarity
vary strongly with measures and link probabilities used.
However similarities for corrected measures seem to be
always higher than for regional measures.
The similarity in network measures is due to the

removed boundary effects as well as to the similarity in
network structure. All links that connect nodes within the
specified region are the same in both networks. The global
network has more links as well as links that connect nodes
in the region with nodes that are not in the region; in
particular, links that reach deep into the region are rare
due to the power-law dependency in the link probability
p(∆). Note that the degree is not as strongly affected
by these additional links in the global in comparison to
the regional case as is the path-based measure closeness
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Fig. 3: (Color online) Gaussian kernel density estimate from
1000 samples for the distribution of Spearman’s rank corre-
lation coefficients between regional and global closenesses
compared to between corrected and global closenesses. Vertical
lines correspond to the example shown in fig. 1.

Fig. 4: (Color online) Link probability p(∆) for both precipi-
tation networks. Link lengths normalized to 1 for the longest
possible link in the region.

centrality. For instance, correlation coefficients for degree
are higher.
However, due to the lack of information in the regional

in comparison to the global network, i.e., border-crossing
links cannot be resolved, the corrected values of the
network measures of the regional network can still differ
from those derived from ripped-off parts of a global
network. Additional links in the global in comparison to
the regional network can have an additional effect on
network measures —especially if they are long.
These examples show the potential of the method. The

described method removes boundary effects in network
measures, but does not predict how these measures would
be different if the network grows. However corrected
measures for different boundaries are comparable, whereas
the uncorrected measures are not.

Application. – Previous studies of climate networks
have mostly considered a global network [28–30,32–36].
Such networks are spatially embedded networks in a two-
dimensional space without boundaries (e.g., fig. 1, top
left). As soon as we focus on a smaller region, artificial
boundaries in the embedding space are introduced to the
network (e.g., fig. 1, bottom right). Here we restrict rain-
fall networks to the region of Germany; thus, boundaries
are purely artificial and not part of the underlying system.
The here considered regional climate networks are

constructed from precipitation data for the region of
Germany. We use daily meteorological weather station
data (precipitation in millimeters) from 1951 to 2007
provided by the German national weather service
(Deutscher Wetterdienst) for over 2000 stations. From
these time series we construct a simple, undirected and
unweighted network with a number of nodes equal to the
number of time series. Nodes are connected by the non-
linear similarity measure event synchronization [40,42].
Thus, networks are constructed by thresholding. However
events are generated in a way that reduces seasonality
at each station. This is done by defining events only for
days where the daily precipitation sum exceeds the 75%
percentile threshold of all similar days in the years from
1951 to 2007.
Link densities are either 25% or 50%, which corresponds

to similarity values above 0.619 or 0.558, respectively. Such
values are very unlikely to arise by chance. According to
the distribution of random events in time with the same
event density, the probability for a similarity above 0.413
drops below 1%.
Our main results are summarized in the following. The

link probability p(∆) for both networks follows roughly a
Gaussian decay. Thus, the connection probability for two
nodes is strongly distance dependent. This dependence is
shifted to longer distances for the network with the link
density of 50% (fig. 4). This is why we show results for
both networks. Boundary effect estimates for degree are
stronger for the link density of 50% due to the higher
probability of longer links (fig. 5). For the link density
of 25%, degree boundary effects are strongest close to
boundaries and become more constant towards the spatial
center because longer links become more unlikely (fig. 6).
For the path-based measures, closeness centrality and
shortest-path betweenness, this is not the case (figs. 8
and 7).

Conclusion. – We have proposed an approach to esti-
mate boundary effects in network measures from spatially
embedded networks based on surrogate ensembles of
spatially embedded random networks for a given link prob-
ability p(∆). These boundary effects can vary depending
on p(∆) and on the network measures used. Using bound-
ary effects estimates, network measures can be corrected
in order to reduce the influence of boundaries. We have
demonstrated the potential of the approach on an artificial
random network and on two regional networks constructed
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Fig. 5: (Color online) Uncorrected degree field for the network with 50% link density (A), the corresponding boundary effects
estimate (B) and the corrected measure (C).

Fig. 6: (Color online) Uncorrected degree field for the network with 25% link density (A), the corresponding boundary effects
estimate (B) and the corrected measure (C).

Fig. 7: (Color online) Uncorrected betweenness field for the network with 25% link density (A), the corresponding boundary
effects estimate (B) and the corrected measure (C).

Fig. 8: (Color online) Uncorrected closeness centrality field for the network with 25% link density (A), the corresponding
boundary effects estimate (B) and the corrected measure (C).
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from rainfall data —all three with different link probabil-
ities p(∆).
Spatial patterns in network measures may look very

different if corrected measures are used instead of uncor-
rected measures (figs. 5–8). This is the case if boundaries
of a network break the isotropy of the link probability
p(∆). The effect of this on network measures is quantified
by our boundary effects estimates.
Depending on the network structure and network

measures used, the effects of boundaries have a bearing
on the entire network. For instance, degree is a local
measure in the network, but depending on the distribution
of link lengths it is non-local in the embedding space.
The clustering coefficient is not even local in the network,
i.e., it depends on topological paths of length three, thus
the spread of boundary effects becomes more complex.
Path-based measures such as closeness centrality and
shortest-path betweenness are extremely non-local in this
sense. This explains why boundaries affect network mea-
sures in the entire network and not only close to them.
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