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Abstract Internal variability of the Asian monsoon sys-

tem and the relationship amongst its sub-systems, the

Indian and East Asian Summer Monsoon, are not suffi-

ciently understood to predict its responses to a future

warming climate. Past environmental variability is recor-

ded in Palaeoclimate proxy data. In the Asian monsoon

domain many records are available, e.g. from stalagmites,

tree-rings or sediment cores. They have to be interpreted in

the context of each other, but visual comparison is insuf-

ficient. Heterogeneous growth rates lead to uneven tem-

poral sampling. Therefore, computing correlation values is

difficult because standard methods require co-eval obser-

vation times, and sampling-dependent bias effects may

occur. Climate networks are tools to extract system

dynamics from observed time series, and to investigate

Earth system dynamics in a spatio-temporal context. We

establish paleoclimate networks to compare paleoclimate

records within a spatially extended domain. Our approach

is based on adapted linear and nonlinear association mea-

sures that are more efficient than interpolation-based

measures in the presence of inter-sampling time variability.

Based on this new method we investigate Asian Summer

Monsoon dynamics for the late Holocene, focusing on the

Medieval Warm Period (MWP), the Little Ice Age (LIA),

and the recent period of warming in East Asia. We find a

strong Indian Summer Monsoon (ISM) influence on the

East Asian Summer Monsoon during the MWP. During the

cold LIA, the ISM circulation was weaker and did not

extend as far east. The most recent period of warming

yields network results that could indicate a currently

ongoing transition phase towards a stronger ISM penetra-

tion into China. We find that we could not have come to

these conclusions using visual comparison of the data and

conclude that paleoclimate networks have great potential to

study the variability of climate subsystems in space and

time.
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1 Introduction

Monsoonal precipitation dynamics and their possible

change due to global warming are a matter of political and

public concern in most of South-East Asia, and especially

in India and China, as lives and prosperity depend critically

on the monsoons’ rainfall delivery (Cook et al. 2010;

Kumar et al. 2010; Zhang et al. 2011). The Asian (Sum-

mer) Monsoon has shown abrupt changes in the past and its

intensification (weakening) was likely concurrent with

cultural prosperity (demise) (Buckley et al. 2010; Cai et al.

2010; Zhang et al. 2008). The Asian monsoon system is

comprised of two main sub-systems, the Indian Summer

Monsoon (ISM) and the East Asian Summer Monsoon

(EASM) (Fig. 1), both mainly driven by seasonal changes

in the land-sea thermal contrast and related atmospheric

pressure changes.

The Intertropical Convergence Zone (ITCZ) plays a

governing role in monsoonal circulation and variations of

its mean northward extent have been linked with summer

monsoon strength (Breitenbach et al. 2010; Gadgil 2003;
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Ma et al. 2012; Sinha et al. 2011). The defining geography

(composition of landmass, mean altitude, position and

extent of surrounding seas) however, is quite different for

ISM and EASM. The extent to which the two sub-systems

interacted in the past is a matter of current research (Cheng

et al. 2012; Wang et al. 2005, 2010; Zhang et al. 2011;

Zhou et al. 2011). As a third player, the mid-latitude

westerlies dominate the area north and west of the (vari-

able) monsoon boundary (Cheng et al. 2012). The relative

strength of these circulation systems and thus their areas of

influence, varied in the past (Herzschuh 2006; Mayewski

et al. 2004; Wang et al. 2010), and our knowledge about

the complex spatio-temporal processes and variability

behind them is insufficient (Cook et al. 2010).

Numerous paleoclimatological studies focused on the

reconstruction of individual climatic parameters, such as

moisture or precipitation (Borgaonkar et al. 2010; Mana-

gave et al. 2010; Pant et al. 1988; Ramesh et al. 2010;

Singh et al. 2009; Wang et al. 2010; Yi et al. 2011; Zhang

et al. 2011), temperature (Yi et al. 2011), or droughts

(Borgaonkar et al. 2010; Cook et al. 2010; Sinha et al.

2011; Yi et al. 2011) by use of proxy records. Furthermore,

linkages among the Asian Monsoon system and the North

Atlantic realm (Gupta et al. 2003; Hong et al. 2003; Ma

et al. 2012; Wang et al. 2001, 2005 ), El Niño/Southern

Oscillation (ENSO) (Shukla et al. 2011), and solar forcing

(Gupta 2005; Wang et al. 2005; Zhang et al. 2008) have

been explored. However, the mechanism(s) and variability

of the interactions between ISM and EASM during the

Holocene (and beyond) remain far from being fully

understood (Wang et al. 2005, 2010; Zhang et al. 2011).

Using numerical meta-analysis and reconstructions of

moisture indices, Wang et al. found an asynchronous

evolution of the ISM and the EASM for the Holocene on

centennial timescales (Wang et al. 2010). The spatial dis-

tribution of the paleoclimatic records used in the study of

Wang et al. did include only four records from India (out

of a total 92) and focused mainly on China and Tibet, with

no record in the ISM domain below 27�N (Wang et al.

2010). It is important to note that the currently general low

number of datasets from the Indian peninsula might lead to

systematic biases towards the Tibetan plateau and China,

complicating or even precluding meaningful interpretation

of results, a caveat that must be accounted for.

Based on ensemble runs of a coupled climate model run

with anthropogenic forcing, May found an increase in

monsoonal rainfall, accompanied by a decrease in the

intensity of the overall lower-tropospheric large-scale cir-

culation at a warming of 2�C relative to pre-industrial ISM

conditions (May 2010). Derived from global climate

modeling results and observations, an overall stagnation in

precipitation but a redistribution towards extremes (pro-

longed dry and wet spells) was supported in Kumar et al.

(2010). Decreasing reliability of rainfall and increased

variability of precipitation amounts would have disastrous

impacts on rain-fed agriculture all over Asia.

Fig. 1 Study area with generalized summer wind directions of the

ISM and EASM (gray arrows), the westerlies (dashed arrows), as

well as the spatial coverage of the records considered in the

paleoclimate networks. Numbers of the nodes were assigned accord-

ing to the longitude of the respective study site and furthermore refer

to the entries in Table 1. Sites that are at close proximity might show

displaced to prevent overlap of the dots and labels. Colors of the dots

indicate the type of archive: orange tree sites, white stalagmites,

purpleother archives (marine sediment (1), ice core (10), reconstruc-

tion using historic documents and tree ring data (27))
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In the paleoclimatic context, we strive to understand

whether the weakening of the large-scale circulation

associated with a warming scenario, as found for the time

period 2020–2200 AD in the modeling study by May

(2010), is paralleled by an increased influence of the ISM

on the EASM domain during the MWP (1100–700 years

BP) and during the recent warm period (RWP, 1850–1980

AD), in contrast to an expected diminished influence dur-

ing the LIA (100–400 years BP). Given that the Asian

Summer Monsoon is, amongst other factors, differential-

heating driven, and thus modulated, to some extent, by

northern hemisphere temperature, we hypothesize that the

eastward ISM penetration depth was higher during periods

of extended northern hemisphere warmth (e.g. the MWP)

than during cool periods and vice versa. We define the

boundaries of LIA (MWP) in agreement with the timings

given by Jones et al. (2001) and within the periods of

relative cold (warmth) in the East Asian temperature

reconstruction by Osborn and Briffa (2006).

On short (annual to multi-decadal) timescales, we are

not aware of any study systematically investigating the

interactions between both sub-systems. As we find that the

understanding of any system is fundamental to compre-

hending its links to other systems, we aim to investigate the

extent of interaction between the traditional ISM domain

over continental India and the EASM domain over China.

To this end we propose here the construction of paleocli-

mate networks, based on significant association between

proxy records of past climate variability. Palaeoclimate

records come with particularities, when compared to data

used in climate network studies up to now. They are het-

erogeneously sampled in time (1) and space (2) which, if

ignored, leads to biased and possibly incorrect results.

Previous climate network studies have focused on the

analysis of gridded datasets, from reanalysis data (Donges

et al. 2009, 2011; Gozolchiani et al. 2011; Steinhaeuser

et al. 2010; Tsonis et al. 2006; Yamasaki et al. 2009) or

recent observations (Ge-Li and Tsonis 2009; Malik et al.

2010, 2011) and were thus restricted to the recent, obser-

vational period. Palaeoclimate records are, in contrast,

spatio-temporally inhomogeneously distributed. However,

due to the increasing number of (Asian monsoon) records

published in the last decades (Wang et al. 2010), the spa-

tio-temporal reconstruction of past climates becomes fea-

sible (Cook et al. 2010; Wang et al. 2010). In difference to

previously analyzed climate networks, paleoclimate net-

works cannot make use of direct information about climate

parameters (e.g. temperature) and have to rely on proxy

data that are usually irregularly sampled in time and space.

Generally, fewer datasets are available the further back in

time the analysis is extended. Also, much less paleoclimate

data is available from India, compared to China. One

option would be to include only datasets that span all time

periods of interest and an equal number from both regions

of interest (ISM and EASM domain). However, this would

decrease the robustness and significance of the results.

Therefore, we strive to sample all regions consistently in

order to retain comparability for different time slices, and

include all records in the database where they meet the

temporal sampling requirements. Possible bias effects

should nevertheless be kept in mind for the subsequent

analysis and need to be discussed.

To improve spatial resolution and robustness of the

estimates with increasing node numbers, we forsake the

reconstruction of direct physical flows (which would limit

us to using only precipitation or temperature reconstruc-

tions), but instead combine records of precipitation and

temperature. We argue that temperature and precipitation

amounts over land covary, as the moisture-carrying

capacity of atmospheric flows increase with temperature.

We do not claim that the relationship, especially in mon-

soonal and tropical climate, co-varies in a strict linear

correlation sense either positively or negatively, but that a

(nonlinear) association between the climate variables

probably exists. Trenberth (2005) found a negative corre-

lation between monthly mean anomalies of boreal summer

(MJJAS) surface air temperature and precipitation amount

of reanalysis data (1979–2002) over much of India and

China and state that ‘‘neither precipitation nor temperature

should be interpreted without considering the strong co-

variability that exists’’. Therefore, until a higher density of

records for individual climate parameters is established, we

believe it is justified to use both to reconstruct the flow of

dynamical information, measured by the extent of linkages,

significant associations, between the time series of indi-

vidual nodes. Combining different archives increases the

robustness of the analysis against individual archive-spe-

cific biases, e.g., trees might provide information where

stalagmites cannot or vice versa. In contrast to other

analysis methods, every node retains its individuality in the

network and its role in the final result, the network, can be

assessed both visually (e.g. in force-weighted network

representations) or quantitatively (by computing network

statistics). Furthermore, should incompatibility be sus-

pected, node removal is straightforward and does not

require re-computation of the whole network.

Using published paleoclimate records from the ASM

domain, we analyze late Holocene Asian monsoon

dynamics during the MWP, the LIA, and the recent warm

period (RWP, here: 1850–1980 AD). We review literature

and methodology of complex (climate) networks in Sect.

2.1. In Sect. 2.2 we then set out to document paleoclimate

network construction and introduce linear and nonlinear

similarity measures adapted to paleoclimate data. We

describe the ASM paleoclimate data in Sect. 3 and the

results we obtain from the paleoclimate networks in Sect.

Asian Monsoon dynamics from small but complex paleoclimate networks 5
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4. In Sect. 5 our results regarding the Asian monsoon

synchronization for the past millennium are compared to

previously published findings and we discuss the robust-

ness and advantages of the paleoclimate network approach

compared to the usually employed visual comparison.

2 Methods

We propose a new, complementary tool for the recon-

struction and investigation of spatio-temporal dynamics of

climate systems in the past: Palaeoclimate networks. The

approach is inspired by climate networks which are a rel-

atively new, but a powerful and increasingly popular tool

to reconstruct Earth system dynamics. In the following we

first describe climate networks and subsequently develop

the paleoclimate network approach.

2.1 Climate networks

Climate networks are a relatively new tool to explore

spatio-temporal variability of climate parameters and

assess dynamical information flow between spatially dis-

tant regions (Donges et al. 2009, 2011; Malik et al. 2010)

and the stability of the climate system and its teleconnec-

tions (Gozolchiani et al. 2011; Steinhaeuser et al. 2010;

Tsonis and Swanson 2008; Yamasaki et al. 2009). They are

inspired by complex networks theory, which, from soci-

ology through gene networks to citation networks consist

of two main components: nodes, or vertices and links, also

called edges. The nodes might be representing actors,

genes, or authors of scientific papers. The links can be

drawn from co-starring in the same movie, sequential

expression of genes, or co-authorships.

Climate networks are based on observations of climate

dynamics (time series) at certain points, the nodes. Com-

puted from these time series, pairwise similarity calcula-

tion [linear correlation or nonlinear interrelations, like

mutual information (MI) (Donges et al. 2009) or recur-

rence-based measures (Feldhoff et al., submitted)] yield a

correlation matrix with entries for each pair of nodes. This

matrix is then thresholded using either a fixed value for the

correlation or a prescribed link density. The resultant

adjacency matrix A is a sparse binary matrix with the i,jth

entry being non-zero if and only if the time series repre-

senting nodes i and j are significantly associated. Network

statistics can subsequently be employed to assess overall

characteristics of the network such as the degree distribu-

tion (e.g., how many links do the individual nodes have) or

more abstract measures such as betweenness, where

information flow through the network is quantified.

2.2 Palaeoclimate networks

2.2.1 Difference to recent climate networks

Major difference between modern observational or

reanalysis data and proxy data is the heterogeneous sam-

pling of the paleoclimate records. Whereas modern

observations are represented regularly, hourly, daily, or

monthly, many paleoclimate proxies are reconstructed with

sampling intervals (e.g. from stalagmites or ice cores),

varying intrinsically from sub-annual to centennial reso-

lution. By nature, annually laminated sediments or tree ring

chronologies should not suffer from this complications.

However, missing data can occur in them as well and it was

recently reported that tree-ring based temperature recon-

structions might be biased, as trees might be missing rings

in exceptionally cold years after volcanic eruptions (Mann

et al. 2012). Carefully cross-dated, such flaws could be

identified and corrected for in the final chronology. The

final dataset would then, again, be irregular in time.

As they are reconstructed from natural archives with

varying sedimentation rates, paleoclimate time series are

generally unevenly sampled. They can contain hiatuses and

might have poor chronological control. These features

require special measures for similarity assessment, as

physically meaningful signal reconstruction is often not

feasible, and standard interpolation methods introduce

strong bias effects (Babu and Stoica 2010; Rehfeld et al.

2011; Schulz and Stattegger 1997; Stoica and Sandgren

2006). We have recently shown that using a Gaussian

kernel-based correlation estimator, Pearson correlation can

be estimated more efficiently than if using interpolation

(Rehfeld et al. 2011). Here, we additionally put forward an

algorithm to estimate MI, a nonlinear dependence measure,

for unevenly sampled data. In Sect. 2.2.2 we review these

similarity measures and show, that our MI estimation

algorithm compares favorably to an approach using stan-

dard linear interpolation techniques. All records in one

network are required to have recorded climate variability at

comparable temporal resolution. For periods of interest in

the range of few centuries, annual to multi-annual resolu-

tion is required to meet the numerical demands of the

estimators. Not all records, however, will cover the whole

period of interest, and some will display large gaps. While

our methodology is able to cope with such complications,

individual significance tests for each pair of nodes, mim-

icking their temporal coverage, have to be conducted. This

is in contrast to standard climate network construction,

where usually a link density selecting, e.g., the 5 %

strongest associations as links is used (Donges et al. 2009;

Malik et al. 2010, 2011).

6 K. Rehfeld et al.
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2.2.2 Similarity measures for irregularly sampled time

series

Linear dependence, or similarity in linear properties,

between two time series (i.e. the dynamical processes

behind them) is often estimated employing the cross cor-

relation function (XCF) (Chatfield 2004; Rehfeld et al.

2011). The association between observations might, how-

ever, also be non-linear and not follow a specific functional

form, which can not be captured by linear correlation.

Bivariate (cross) mutual information as a measure of

dependence additionally captures nonlinear associations

(Dionisio et al. 2004), which is why we will use it along

with correlation as similarity functions SiðmDtxyÞ, with the

index i indicating, which measure was calculated and m

representing a lag time step of a width of Dtxy. We use a lag

vector resolution of Dtxy ¼ maxðDtx;DtyÞ, choosing the

larger of the average sampling rates Dtx and Dty of the two

time series. The scales of variation of MI and XCF are

different, but we do not employ the absolute values in the

network analysis. We determine the significance of the

numerical estimates with respect to critical values from

surrogate data and subsequently convert to a binary scale (0

for no, 1 for significant association) that we can inter-

compare. Standard methods require regular observation

intervals and therefore signal reconstruction on an evenly

sampled grid. However, the original irregularity causes

positive spectral bias towards low frequencies and conse-

quently high-frequency variability is underestimated when

it is overcome by conventional interpolation methods

(Babu and Stoica 2010; Rehfeld et al. 2011; Schulz and

Stattegger 1997; Stoica and Sandgren 2006). Gap-filling

and meaningful signal reconstruction is non-trivial, as,

physically, surrounding climate processes during archive

growth (e.g. with sufficient moisture availability) and

impeded growth (e.g. in a drought period) are potentially

very different and inferring from observations of one on

potential observations of the other is probably very error

prone. A negative coupling strength bias has been found for

the pairwise correlation estimate of irregular time series

and linear Pearson correlation can be estimated more effi-

ciently employing a Gaussian kernel-based, adapted, cor-

relation estimator (Rehfeld et al. 2011).

Gaussian kernel-based Pearson correlation The main

idea of Pearson correlation is to take a mean over con-

currently observed and standardized products of observa-

tions from time series of stationary stochastic processes.

Concurrency of observations is rare for unevenly sampled

time series and would need to be forced via signal recon-

struction to allow the application of standard methods. Key

idea of the Gaussian kernel-based estimator is to calculate a

weighted mean over standardized observations, avoiding

signal alteration. The Gaussian weights rate, e.g., a product

of observations that are (almost) concurrent higher than a

product of observations that are far apart. The resultant

estimator was tested on synthetic and real datasets and

shown to be more efficient for irregular time series than

other techniques (e.g. linear interpolation, inversion of the

Lomb-Scargle periodogram) (Rehfeld et al. 2011).

Mutual information for irregularly sampled time series

Mutual information MI(X, Y) is a measure of the depen-

dence (linear or nonlinear) between two random variables,

X and Y. This measure from information theory can be

interpreted as the uncertainty reduction in variable X, given

that we observed Y. It is symmetric, i.e. relationships of

opposite sign but the same association strength give the

same MI. The measure yields a null result if, and only if,

the two random variables, in our case time series of

observations, are independent (Kraskov et al. 2004).

MI can be estimated using

MIðX; YÞ ¼
X

x;y

px;y log
px;y

pxpy

; ð1Þ

where px,y is the two-dimensional joint probability density

function of the variables X and Y and px resp. py are the one-

dimensional probability distributions of X resp. Y. Different

estimators are applied to estimate mutual information,

starting from the joint probability distribution, itself

estimated from an x - y scatterplot. In case of irregular

sampling, however, the bivariate observations (Xt, Yt) at

regular observation points t required for a scatterplot are not

readily available. We therefore perform a local

reconstruction of the signal, estimating for each point i

{ti
x, xi} a local signal reconstruction by calculating a

weighted mean of signal {tj
y, yj}, centering the weight

around ti
x. If there are no or too few observations yj available

around ti
x this reconstruction is not performed. From this we

get a new, bivariate set of observations {ti
x, xi, yi

rec}. We then

repeat the procedure by stepping through tj
y, which yields

{tj
y, xj

rec, yj}. From these sets of observations we can estimate

the joint density of X and Y using standard estimators for MI.

We have compared the performance of MI estimation for

standard linear interpolation and our reconstruction scheme

at varying sampling irregularities. We followed the sampling

sensitivity analysis described in Rehfeld et al. (2011). We

generated AR1 processes at very high time resolution and

then re-sampled the observations onto the irregular

observation times. The driving process is given by

XðtiÞ ¼ UXðti�1Þ þ ni ð2Þ

and we couple a second process to it at a time lag l

YðtjÞ ¼ aXðti�lÞ þ ei ð3Þ

n and e represent Gaussian distributed noise processes, U
represents the prescribed autocorrelation and a the cou-

pling parameter. Here we chose U ¼ 0:5 and a = 0.8 and,

Asian Monsoon dynamics from small but complex paleoclimate networks 7
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at unit average sampling rate, a time series length of 250

units. The expected value for mutual information of these

processes at the lag of coupling is given by MI(X(t),

Y(t ? l)) = - 0.5log(1 - qxy
2 (l), where qxy(l) = a = 0.8,

as the processes follow a bivariate normal distribution

(Nazareth et al. 2007). We can then set out to estimate

MI(X(t), Y(t ? l)) from the simulated time series and,

comparing the result to the expected value, calculate the

Root Mean Square Error (RMSE) of the estimators. We

show the results in Fig. 2. With increasing sampling

irregularity (i.e. larger gaps) the RMSE of the linear

interpolation routine increases systematically. This effect is

also visible for the Gaussian-kernel based signal recon-

struction, but it is much milder. We therefore conclude that

estimating MI using local Gaussian kernel reconstruction is

more efficient than using standard interpolation.

2.2.3 Constructing a paleoclimate network

The adapted similarity measures (Gaussian kernel-based

correlation and MI estimation: gXCF and gMI), form the

basis for a network analysis of paleoclimate records, because

employing them we can hope to be able to capture the true

dependence structure with small sampling bias. Network

construction is conducted according to the following steps:

1. In the first step, paleoclimate records in the study

region, representing, presumably, one climatic com-

ponent (e.g. monsoonal rainfall amounts) are identified

and checked for comparability: While their time

sampling does not have to be equal, the average

sampling interval should be of the same order of

magnitude. Within the time slice of interest, the record

should consist of at least 100 observations, to ensure

the power of the similarity tests.

2. In the second step we pre-process the suitable datasets.

We limit the time series to a time window of width W. For

each record we subtract a nonlinear trend which we

estimate by applying a Gaussian kernel smoother of a

bandwidth of W/2. We choose the bandwidth such that

we remove centennial-scale trends but do not smooth

high-frequency (annual to decadal) variability. The data,

within this time window, now has zero mean and unit

variance.

3. In the third step, the degree of similarity is estimated

for all pairwise combinations of records. Within the

overlap of the individual pairs, we calculate lagged MI

and Pearson correlation in the ‘standard’ way, involv-

ing interpolation to an average time scale, iXCF and

iMI, and using the adapted estimators, gXCF and gMI.

To compensate for possible dating uncertainties, we

determine the largest absolute value of the similarity

function SðmDtxyÞ, within time lags of m = 0 ± 1

around zero lag. As a result we get four matrices with

MI, resp. correlation estimates.

4. We then conduct pairwise significance tests for each

similarity measure S as described in Rehfeld et al.

(2011): We construct surrogate time series following

the null hypothesis that both records are uncoupled

irregularly sampled autoregressive processes of order

1. The persistence time for the test time series is

estimated from the original records. The similarity

function S(m) for these artificial data is estimated

1,000 times, so that the critical values, the 2.5 and

97.5 % quantiles of the distribution of similarity

estimates, can be determined.

5. Finally, these critical values are used to threshold the

correlation matrices. If a significant correlation exists

between the records i and j, i.e., Sest
i,j \ S2.5

i,j or

Sest
i,j [ S97.5

i,j , we set A(i,j) = 1. If no significant simi-

larity is found we set the entry to zero. We repeat this for

all four similarity estimators and obtain four adjacency

matrices. We then sum the matrices to obtain the final,

weighted, adjacency matrix for the network. The nodes i

and j are linked, if any A(i,j) [ 0. Link weight scales

between zero (no link) and four (all measures find a

significant link). Employing gMI, gXCF, iMI, and iXCF

all together we can improve the robustness of the

network detection, as then the resulting link weight

reflects our certainty of a true similarity and is not likely

be due to the peculiarity of one measure.

6. The obtained network can now be visualized and

analyzed.
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Fig. 2 Evaluation of the MI estimators for irregularly sampled time

series. For each patch on the images we generated 100 coupled AR-

processes. Signal construction and sampling irregularity of the time

series increases along the x and y axis [analog to (Rehfeld et al.

2011)]. For each pair of time series we estimated MI, a based on

interpolation to a mean sampling rate and b using an adapted

Gaussian kernel scheme (right panel). Colors indicate the RMSE of

the estimated cross-MI at the lag of coupling. For the interpolation

scheme, a strong trend towards poor performance is clearly visible for

increasing sampling irregularity, while the Gaussian-kernel recon-

struction scheme still performs much better
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2.2.4 Basic paleoclimate network measures

We calculate weighted node degree Di =
P

j Wi,j, given

by the sum of link weights Wi,j of a node i linking it to

all j others. The overall link density L, is given by

L = 1
4N

P
i,j Wi,j, the sum of link weights divided by the

possible sum of link weights, depending on the number of

nodes N and involved similarity measures (here, 4). To

understand the spatial distribution of our links, we define a

third measure, PConn, the percentage of realized connec-

tions (PConn) between subdomains. We define it as the

fraction of realized vs. possible links between nodes west

of 95� longitude (nodes in the traditional ISM domain) and

nodes east of 95� longitude. We then generate 1,000 ran-

dom networks, redistributing links randomly (at the adja-

cency matrix level), and estimate PConn from each. From

the resultant distribution of PConnsim we can find the

fraction p of random networks that show a lower PConn

than our observed PConnreal.

Similarly, we calculate the average link density of all

nodes and nodes east/west of the boundary to determine if

they show uniform or differing characteristics.

3 Data

In our analysis we include published proxy data from the

Asian monsoon domain between 66� and 116�E, and 10� to

39�N (Fig. 1). We include tree-ring and stalagmite data as

well as one annually laminated sediment core (Von Rad

et al. 1999), one ice core (Thompson et al. 2000) and one

reconstruction of summer temperatures compiled from

tree-ring data and historic documents (Yi et al. 2011). The

data had to cover at least one of the periods (-30–100,

Table 1 Table of all paleoclimate records used in this study

No Name Lat. [�N] Lon. [�E] Archive Proxy Reference

1 SO90-39KG-56KA 25 66 marine varve thickn. Von Rad et al. (1999)

2 Akalagavi 15 74 Stal d18O Yadava et al. (2004)

3 Karakoram 36 75 Tree *rainfall Treydte et al. (2006)

4 ktrc 10 77 Tree rwl-crn Borgaonkar et al. (2010)

5 imrf 13 77 Tree *rainfall Pant et al. (1988)

6 INDI019 30 78 Tree rwl-crn Borgaonkar et al. (1994)

7 INDI021 30 79 Tree rwl-crn Borgaonkar et al. (1994)

8 Jhumar 19 82 Stal d18O Sinha et al. (2007)

9 Dandak 19 82 Stal d18O Berkelhammer et al. (2010), Sinha et al. (2007)

10 DasuopuC3 28 85 Ice core d18O Thompson et al. (2000)

11 Wah-Shikar 25 92 Stal d18O Sinha et al. (2007)

12 CHIN006 36 98 Tree rwl Sheppard et al. (2004)

13 CHIN005 37 99 Tree rwl Sheppard et al. (2004)

14 CHIN017 29 99 Tree rwl Cook et al. (2010)

15 CHIN019 29 100 Tree rwl Cook et al. (2010)

16 CHIN021 29 100 Tree rwl Cook et al. (2010)

17 HIN001a 37 100 Tree rwl-crn noaa-tree-5408; Zu, R.Z.

18 CHIN018 29 100 Tree rwl Cook et al. (2010)

19 CHIN020 30 100 Tree rwl Cook et al. (2010)

20 CHIN003 38 100 Tree rwl-crn noaa-tree-5407; Zu, R.Z.

21 Wanxiang 33 105 Stal d18O Zhang et al. (2008)

22 Dayu 33 106 Stal d18O Tan et al. (2009)

23 VIET001 12 108 Tree rwl-crn Buckley et al. (2010)

24 Jiuxian-c996-1 33 109 Stal d18O Cai et al. (2010)

25 Heshang 30 110 Stal d18O Hu et al. (2008)

26 CHIN004ea 34 110 Tree rwl-crn noaa-tree-5352; Wu, X.D et al.

27 NCPrecipIndex 37 112 Historic ? tree *JJA precip. Yi et al. (2011)

28 Shihua 2003 39 116 stal *Temp Tan and Liu (2003)

Records are listed from West to East. Proxy names marked with asterisks (*) represent reconstructions of climate parameters. Tree data from

China without accompanying reference are available and were downloaded from the ITRDB database at http://www.ncdc.noaa.gov/
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100–400 or 700–1100 years BP) with at least 100

observations.

Tree ring width chronologies (indicated by rwl-crn in

Table 1) were used as provided. Raw tree ring width series

(rwl) were assembled into chronologies by first detrending

the individual tree series with a 50-year Gaussian kernel

smoother (to remove youth bias), standardizing and then

averaging the individual trees for the corresponding years.

4 Results

We derive small, but due to the spatial and archive-specific

heterogeneities still very complex, networks from the data-

sets in Table 1. For each time period (MWP, LIA, late RWP)

we select records fulfilling the data requirements described in

Sect. 2.2. We subsequently describe the retrieved networks

visually, qualitatively, and quantitatively.

Table 2 Palaeoclimate record composition and results obtained from the networks for the three considered time periods, MWP, LIA and RWP

MWP LIA RWP

Time frame [yrs BP] 700–1100 100–400 -30–100

No. of records (All/ tree/ stal/ other) 10 (4/5/1) 25 (16/6/3) 22 (16/3/3)

No. of records East/West of 95�E. 4/6 10/15 8/14

Weighted degree (mean/\95�E/ [ 95�E) 8.00 / 11.25 / 5.83 15.92 / 12.20 / 18.40 11.00 / 9.00 / 12.14

PConn (p-val) 0.24 (0.76) 0.14 (0.16) 0.13 (0.56)

Fig. 3 Temporal coverage of the Asian Monsoon records considered

in the paleoclimate networks. While many (22, resp. 25) datasets

cover RWP and LIA, we find only 10 records at adequate resolution

for the Medieval Warm Period. All data was transformed to zero

mean and unit variance for the plot. Shaded areas indicate the time

windows studied
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4.1 Medieval warm period (MWP)

In total, 10 records could be included in the network for the

MWP (700–1100 years BP), out of which we had four tree,

five stalagmite and one annually laminated marine record.

References to data sources are given in Table 1. The node

distribution is spatially biased, as more records are avail-

able from longitudes East of 95�E (Table 2).

After pairwise similarity assessment and significance

testing at the 95 %-level, we observe a well-connected

network (Fig. 4). Still, the mean correlation levels for all

measures (reported in Table 2) are not significantly dif-

ferent from zero (for gXCF and iXCF) and the intrinsic

estimator bias of approximately 0.6 (for gMI and iMI).

Note that though we report the upper and lower quantiles

for MI, we only used the upper quantile to threshold the

correlation matrix, as MI is a symmetric measure (see also

Sect. 2.2.2).

Between the 10 nodes we find 22 links, which have an

overall weight of 40 (link weights scale from zero to four,

as described in Sect. 2.2). We find two links with highest

certainty (weight = 4, Wanxiang $ Dandak and Wanxi-

ang $ Shihua), showing a strong West-East connection.

The Dandak record is also linked with high certainty to

Jhumar cave, SO90-39-KG-KA and the tree ring chronol-

ogy CHIN006). It is the node with the highest weighted

degree, followed by the Wanxiang record. The weighted

node degree is visualized by the size of the nodes in Fig. 4.

The tree-ring record from Vietnam, VIET001, is the node

with the lowest degree, it is linked only to one, the east-

ernmost marine record (1). Link weight, in Fig. 4a, b, is

indicated by both width and darkness of the links. The

nodes in the network in Fig. 4b are not placed according to

their geographic origins but according to an iterative force-

weighing algorithm. Linked nodes are attracted to each

other, while nodes without connections are repelled. Iso-

lates, only loosely connected nodes, here the VIET001 or

CHIN005 tree ring records, tend to be pushed to the mar-

gins, while hubs, i.e., nodes that are strongly connected

through the network (here: the Dandak stalagmite record),

remain central.

Finally, we divide the nodes into two sections, West and

East of 95�E and estimate regional degree and PConn, as

defined in Sect. 2.2.4. Were the two domains actually

asynchronous and independent, we would not expect to

find a significant fraction of realized links between nodes

across the artificial border and, by consequence, PConn to

be low. Assuming independence of the regions, we would

also expect the node degree statistics on both sides to be

homogeneous. However, at an average weighted degree of

8 we find that nodes in the West show an almost twice as

high degree as further East (Table 2). We find

PConn = 0.24, so approximately one quarter of the

possible links are realized. Conducting our simple statis-

tical test in which we redistribute the links randomly across

the network for each similarity measure, we find that 76 %

of these networks have fewer connections between the

subnetworks, so the connectivity across the artificial border

is rather high.

4.2 Little ice age (LIA)

In the more recent period of the LIA (100–400 years BP)

we were able to include 25 records, 16 from trees, 6 sta-

lagmite and 3 other records (Records no. 1, 10 and 27, see

Table 1). Again, the node distribution is spatially biased

towards China, with two thirds of the records located east

of 95�E.

108 links connect the nodes, with a weight sum of 199

and a weighted link density of &17 %. We find 5 links of

highest and 16 of high certainty (Fig. 5). The ‘supernodes’,

having the highest degree, are th e Chinese stalagmite

record, Dayu (sum of weights 27) and the tree chronology,

CHIN018 (weight sum 26). The South Indian record of

Akalagavi has the lowest link weight sum (5). At the same

time, the previously (during the MWP) almost isolated

Vietnamese tree-ring record, VIET 00, is now well-con-

nected to the network (weight sum 14) and is with highest

certainty associated to tree-ring record CHIN018! In the

force-weighted representation (Fig. 5b), however, it is still

pushed outwards, similar to the almost isolated Akalagavi

record from Southern India.

During the time period of the LIA, the average degree

east of the artificial 95�E boundary is 30 % higher than on

the Indian side of the boundary, while the overall weighted

degree is almost twice as high as compared to the MWP.

This is concordant with twice the number of available

nodes. The estimated PConn is lower (0.14) across the

border and relatively few, only 16 %, of the randomly

generated networks have a lower connectivity.

4.3 Recent warm period (RWP)

For the RWP (-30–100 years BP, i.e., 1850–1980 AD) we

included 22 records, out of which 16 came from trees, three

from stalagmites and three from other sources (Number 1,

10 and 27 in Table 1). Roughly 60 % of the nodes lie west

of 95�E, the spatial bias is therefore slightly lower than in

the preceding time intervals. There is no apparent overall

association amongst all nodes, as the mean correlation

levels are well between the critical values, given in

Table 2.

The obtained network is rather sparsely connected

(Fig. 6). We find 62 links between the 22 nodes with an

overall link sum of 121. The overall weighted link density

is &13 %. Only two links of highest certainty are observed
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(Heshang$ CHIN001a; CHIN021$ CHIN20) and seven

of high certainty. The most connected node is the Chinese

tree-ring record CHIN017, and the Akalagavi record has

the second highest weighted degree (17). SO90-39-KG is

an isolated node in this time interval, with no link to the

rest of the network and the Indian tree-ring chronology

INDI019 has only a weighted degree of 2. VIET001 has an

above-average weighted degree (16) and is, like the South

Indian Akalagavi record (17) well-connected to the net-

work, both are centrally located in the force-weighted

network representation (Fig. 6b).

Although the across-border connectivity PConn is, at

0.13, lower for the RWP than for the previous LIA period,

the significance of the estimate (p = 0.54) is low due to the

overall lower number of connections (a lower average

degree than in LIA) and the result can not be distinguished

from a randomly generated network of the same link

density.

4.4 Comparison of medieval warm period, little ice

age, and the recent warm period

Summarizing the above results we find that

• the warmer MWP featured a high overall link density, a

strong West-East connection and a higher node degree

west of the artificial boundary.

• the colder LIA showed an lower link density, a lower

West-East linkage and a higher degree east of 95�E

longitude. Within the ISM domain, fewer links connect

meridionally than zonally.

• during the relatively warmer RWP we derive the lowest

overall link density and a medium West-East connec-

tivity, consistent with a more uniform network.

• although the net connectivity PConn is decreasing

towards the present (0.24,0.14,0.13) for MWP/LIA/

RWP, this is consistent with an decrease in link density

(0.22,0.17,0.13). If we account for this effect by

standardizing the fraction of realized zonal edges by

dividing by the average link density, we observe a

pattern that is in accordance with the significance test

results: PConn/D & (1.1, 0.8, 1.0) is high 1,000 years

ago, drops for the period of the LIA and is higher,

though not at the MWP level, for the most recent RWP

network. In compliance with this, the p values we

obtained show the same patterns, (0.76,0.16,0.54).

These p-values indicate how PConn is to be interpreted

with respect to the null hypothesis of the network being

homogeneous and random. The high value of p during

the MWP points towards a stronger zonal linkage than

expected from random graphs of the same link density.

The low value for the LIA reflects a lower connectivity,

which is inconsistent with an overall association

between the areas east and west. The RWP network

is practically random (p = 0.54, close to the median of

the PConn from surrogate networks).

The mean correlation level in the time section, considering

all pairwise similarities, is close to to the zero, resp. the

bias level for MI (results not shown). We would like to

point out that, although we do have a shift towards a higher

fraction from tree-ring records towards today, the average

tree-link density is slightly higher but comparable to the

link densities observed amongst the rest of the nodes for

LIA and RWP (see Table 2) and much lower for the MWP.

5 Discussion and conclusions

5.1 Medieval warm period

The MWP paleoclimate network, representing a period of

northern hemispheric warmth, shows strong zonal con-

nectivity between the subdomains, linking India and China

very effectively. This strong eastward flow of dynamical

information indicates a strong ISM circulation, with a

strong ISM penetration into the mainland of China. A

temperature modulation of ISM strength has been observed

on decadal to millennial timescales (Cai et al. 2010; Cheng

et al. 2012; Wang et al. 2005; Zhang et al. 2008) and is

expected from model results (Schewe et al. 2012).

Increased northern hemisphere temperature could have

allowed an earlier retreat of the Tibetan High in spring

parallel to a more northward intrusion of the ITCZ. This

could then have resulted in an earlier ISM onset, and a

prolonged and enhanced ISM season. We hypothesize that

increased circulation allowed deeper eastward ISM pene-

tration into China, and that the northern ITCZ is the main

factor linking India and China during the MWP summers.

5.2 Little ice age

In contrast to the MWP, the cool LIA yields a comparably

weaker information flux towards the East and strong

regional associations within China, pointing towards

increased regional scale, or EASM, influence in this region.

The low number of meridional links over India during the

LIA and the disconnection between the ASM sub-systems

could be explained if we invoke a southward mean ITCZ

position, leading to a relative strengthening of local

Fig. 4 Network for the MWP: a network embedded in the observa-

tion space with true geo-coordinates; b a force-weighting algorithm

was applied in which linked nodes are attracted and unlinked nodes

repelled, providing a complimentary network view independent of the

nodes’ locations. The darker and thicker a link, the higher its weight;

the size of a node corresponds to its weigthed node degree, whereas

the node color indicates the type of archive (cp. Fig. 1)

b
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weather effects in India and China, and a disruption of the

link between the ISM and EASM domains. At the same

time the Vietnamese tree-ring record is now strongly

connected to sites in central China, and we find highly

significant links across the Tibetan Plateau. A relative

increase in the Tibetan High and an increased importance

of local effects during this cold phase would explain these

observations. In agreement with this the (at present ISM-

dominated) record from Wanxiang cave (Cai et al. 2010)

was found to show a wetter MWP and RWP with stronger,

and a drier LIA with weaker monsoon periods, respec-

tively. A link between the Indian Dandak cave record,

located centrally in the zonal ISM inflow corridor, and

Wanxiang cave was observed for the onset phase of the

LIA (Berkelhammer et al. 2010; Rehfeld et al. 2011).

Unfortunately, we have no insight in this link during the

entire LIA period because the Dandak record does not fully

cover the LIA. However, for the Jhumar stalagmite record,

which is located in close proximity to the Dandak site, we

do not find highly significant multi-annual to decadal scale

similarities during the LIA period, corroborating our

hypothesis of a weakened teleconnection between India

and China at that time.

5.3 Recent warm period

The paleoclimate network for the most recent time period

does neither indicate strong nor weak zonal information

flow. Link orientation appears to be almost random, which

could be consistent with a transition from the ‘cold state’

(emphasized Tibetan High and local effect importance, and

decreased ISM meridional components) to a ‘warm, MWP-

like, state’ (deep eastward ISM penetration, strong merid-

ional links within India). This is also supported by node

degree statistics, which show an equal distribution of links

on both sides of the artificial 95�E boundary. Our obser-

vation period does, however, include the transition from

the LIA (Osborn and Briffa 2006) and increasing anthro-

pogenic impacts and alteration of the atmosphere, also in

monsoonal Asia (Ruddiman 2003; Zhang et al. 2008), and

we must be careful not to over-interpret this results.

Though the quantitative accordance between the two

warmer periods is striking, the low spatio-temporal reso-

lution of the MWP proxies is a potential source of uncer-

tainty. While we strove to ensure comparability by

sampling all regions in both networks, archive composition

becomes tree-oriented toward the present. Although a

source of uncertainty, the bias should be negligible,

because the tree-specific link densities are not, or little,

higher than for the rest of the archives. This could be due to

the fact that the tree-sites we included, especially those in

Central China, are located in mountainous areas, where

strong geographic heterogeneities in form of valleys and

mountains induce local moisture flow divergences.

The low number of available paleoclimate proxy records

from the late Holocene is the reason why we chose to

combine temperature and precipitation-dominated records,

based on the assumption of a functional relationship

between the parameters. If a sufficient number of datasets

representing variability of one climate parameter across the

Asian monsoon domain is available, we could attempt to

reconstruct physical flows as in more recent climate net-

work analysis (Donges et al. 2009; Malik et al. 2011), but

at present such an analysis, at least for sub-decadal to

decadal scale variability, is not feasible in the ASM

domain. On decadal to centennial time scales, such an

analysis might, however, be feasible with the inclusion of

other terrestrial and marine archives (e.g. pollen, coral, or

lacustrine records). Our study focused on the Asian mon-

soon, but it is equally possible—and informative—to use

available paleoclimate records from other locations in

addition to study the regional response to forcing factors

like the North Atlantic Oscillation, or El Niño Southern

Oscillation (ENSO). Future extensions of this method may

consider directionalities and indirect couplings, e.g.,

derived from recurrence based methods (Feldhoff et al.,

submitted; Zou et al. 2011). Furthermore, it would be

informative to use the new method for time intervals during

interstadial, stadial, and interglacial times. Such studies

could shed light on the variability of, e.g., monsoonal

teleconnections during these periods.

5.4 Discussion of the paleoclimate network approach

The paleoclimate network approach is a potentially very

powerful tool to complement the currently mostly visually-

based paleoclimate data interpretation. While it is possible

to compare a few records by eye (performing so-called

‘wiggle matching’), this becomes more difficult when the

number of datasets grows. Indeed, the similarity between

some of the time series in Fig. 3 is obvious (e.g. between

the Dandak and Jhumar d18O time series), but the advan-

tage of the paleoclimate network approach is that we obtain

figures for the degree of similarity, not only concerning the

relationship between two proxy records, but also its ties to

all other records included in the analysis. Therefore, to

address the question (‘‘How did the subsystems interact

during the different time periods?’’) we were able to

Fig. 5 Network for the LIA: a network embedded in the observation

space with true geo-coordinates; b a force-weighting algorithm was

applied in which linked nodes are attracted and unlinked nodes

repelled, providing a complimentary network view independent of the

nodes’ locations. The darker and thicker a link, the higher its weight;

the size of a node corresponds to its weigthed node degree, whereas

the node color indicates the type of archive (cp. Fig. 1)

b
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compute a connectivity index from realized links con-

necting the subdomains. The results indicate that interac-

tion was stronger during the MWP than during the LIA,

and the recent warming finds more MWP-like conditions.

Contemplating the time series in Fig. 3 by eye alone we

could not possibly have come to such a similar conclusion.

Uncertainties of the records should be incorporated into

similarity assessment wherever possible. This can be done,

for example by comparing, visually or numerically, on an

absolute time scale (Breitenbach et al. 2012), where the

dating errors are moved into the proxy domain and the time

scale becomes certain. Provided with a proxy record with

confidence bounds it is possible to incorporate these

uncertainties into the paleoclimate network approach

numerically (i.e. via Monte Carlo simulations). A basic

prerequisite for this, however, is the access to dating

information for all data that should be included, a

requirement not met at the moment.

More generally, a paleoclimate network is a tool that

enables us to obtain a spatio-temporal fingerprint of the

climate system, a visual representation that summarizes

what we can see by eye—and more. We could use it also to

study proxy response to climate parameters be they linear

or nonlinear (Anchukaitis et al. 2006; Schleser et al. 1999),

as it relies on association measures suitable for irregular

sampling. Similarly, weather station data is often riddled

with gaps, making it necessary to reconstruct these missing

data—or cut the time periods to the sections of overlap. To

compare them amongst each other—and to proxy recon-

structions—Gaussian kernel-based correlation estimation

(Rehfeld et al. 2011) and mutual information are well-

suited. Such a systematic validation could, for example,

take place in the framework of interacting networks

(Donges et al. 2011), or in a potential multivariate exten-

sion of the paleoclimate networks.

We have attempted to reconstruct monsoonal dynamics

of the last millennium using a combination of different

paleoclimate archives and proxies from Asia. Using the

paleoclimate network approach we find that the warm cli-

mate of the Medieval Warm Period was characterized by a

strong zonal ISM penetration into China, whereas during

the cold Little Ice Age the meridional component within

the EASM was strengthened. We hypothesize that the

ITCZ (itself responding on a variety of factors) is the major

influencing factor connecting the two sub-systems of the

Asian monsoon domain during warm intervals. During cold

periods, the Tibetan High would have forced a retreat of

the ITCZ and local effects become more dominant. Though

we can, at present, not make a statement about the future of

the ISM strength, we find that the most recent period

(1850–1980 AD) is dynamically more similar to the MWP

than to the LIA.
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