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Abstract
Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric

circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscil-

lations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely,

Niño 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used

to estimate the standalone relationship between the climate indices and precipitation after removing the effect of inter-

dependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that

(a) interannual (2–8 years) and interdecadal (8–32 years) oscillations are statistically significant, and (b) the oscillations

vary in both time and space. The results from the partial wavelet coherence analysis reveal that Niño 3.4 and IOD are the

significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that

the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial

physiography of the region.
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Abbreviations
ENSO El Niño-Southern Oscillation

IOD Indian Ocean Dipole

PDO Pacific Decadal Oscillation

SST Sea surface temperature

1 Introduction

Climatic patterns of large-scale atmospheric circulation

have been shown to significantly affect the variabilities and

long-term persistence of precipitation. Investigation on the

association of precipitation variabilities with low-fre-

quency large-scale climatic fluctuations can further

enhance our understanding of the physical dynamics of

precipitation patterns (Agarwal et al. 2019; Araghi et al.

2017; Kim et al. 2008; Tan et al. 2016). For instance, our

understanding of the regional teleconnections between

low-frequency large-scale climatic fluctuations and the

regional hydroclimatic variability has enhanced our ability

to improve the prediction accuracy of monsoonal
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precipitation, which will be useful for efficient water

resource management (Khedun et al. 2014; Konapala et al.

2018; Wang et al. 2014; Yoon et al. 2013). Similarly, an

advanced understanding of the teleconnection of climatic

patterns with hydrological processes, such as streamflow

and soil moisture, can be used for investigating the

occurrence of extreme hydrological events (Niu 2013; Niu

et al. 2014).

The Indian climate is significantly influenced by several

natural large-scale climatic patterns, such as the El Niño-

Southern Oscillation (ENSO), the Indian Ocean Dipole

(IOD), the Pacific Decadal Oscillation (PDO) as well as

other teleconnection patterns, as reported by many studies

(Azad and Rajeevan 2016; Krishnamurthy and Goswami

2000; Krishnan and Sugi 2003; Li and Chen 2014; Mokhov

et al. 2012). Such studies, in particular, have examined the

teleconnections between large-scale climatic patterns and

Indian precipitation and explained the inter-dependency of

the climate indices. For instance, Kumar (1999) analysed a

140-year historical precipitation record and observed an

inverse relationship between ENSO and the Indian summer

monsoon precipitation (ISMR), i.e. weak monsoon arising

from warm ENSO events. Krishnamurthy and Goswami

(2000), using reanalysis product, explained that the phys-

ical link through which ENSO is related to decreased

monsoon precipitation exists on both interannual and

interdecadal timescales. Ashok et al. (2004) reported that

ENSO and IOD had complementarily affected the ISMR

during the previous four decades; whenever the ENSO–

ISMR correlation was low (high), the IOD–ISMR corre-

lation was high (low). In a later study, Ashok et al. (2007)

showed that IOD significantly influences the Indian sum-

mer monsoon precipitation and simultaneously reduces the

impact of ENSO on the Indian summer precipitation,

whenever these events co-occur in the same phase. Bhatla

et al. (2016) showed that the effect of PDO on the Indian

precipitation has significantly strengthened in the more

recent years as compared to that in the earlier years. The

study by Azad and Rajeevan (2016) revealed a statistically

significant inverse relationship between the ENSO events

and the Indian summer monsoon precipitation.

It is important to note that most of these studies have

been based on the analysis of monthly precipitation or

monsoonal precipitation. Although such studies are useful

for precipitation forecasting and water management at

monthly, seasonal, and longer scales, they are often inap-

propriate and insufficient for studying precipitation

extremes. To the best of our knowledge, studies on the

teleconnections between large-scale climatic patterns and

extreme precipitation in India are almost non-existent,

despite the fact that such studies have been conducted for

other regions; for instance, the study by Cazes-Boezio et al.

(2003) identified the seasonal dependence of ENSO

teleconnections over South America and relationships with

precipitation in Uruguay. Grimm (2011) and Grimm and

Tedeschi (2009) re-examined the teleconnections between

extreme precipitation and ENSO in South America and

suggested that the ENSO-related changes in extremes are

much more extensive than the corresponding changes in

seasonal rainfall because the highest sensitivity to ENSO

seems to be in the extreme range of daily precipitation.

Following these, Niu (2013) and Niu et al. (2014) inves-

tigated the teleconnection patterns of precipitation (and soil

moisture) in the Pearl River basin in South China with IOD

and ENSO as the indices. Shi et al. (2016) investigated the

temporal trends and spatial distributions of precipitation as

well as related meteorological variables, analyzed the

relationship between precipitation and elevation over the

Three-River Headwaters Region in China. Recently, Boers

et al. (2019), Agarwal et al. (2019), Kurths et al. (2019) and

Ekhtiari et al. (2019) have revealed the global pattern of

extreme rainfall teleconnections by analysing the atmo-

spheric conditions that lead to these teleconnections. The

study by Boers et al. (2019) further showed Rossby waves

as the physical mechanism underlying these global tele-

connection patterns and emphasizes their crucial role in

dynamical tropical–extratropical couplings.

In examining the teleconnections, studies have generally

used simple regression analysis, empirical orthogonal

function analysis, principal component analysis, wavelet

analysis, and correlation measure (e.g. Pearson’s correla-

tion coefficient). For instance, Ihara et al. (2008) used

multiple linear regression analysis to identify the possible

relation between the annual maximum precipitation and

different climatic indices. Curtis et al. (2007) and

Alexander et al. (2009) used the statistically significant

Pearson correlation between precipitation extremes and

large-scale climate anomalies. Cioffi et al. (2017), Duan

et al. (2015) and Gan et al. (2007) have shown the

advantage of wavelet analysis to study the correlation of

extreme precipitation with climate indices over Canada,

Europe, and Japan, respectively. Other studies that have

used wavelets include those by Zhao et al. (2014) and Tan

et al. (2016), which have employed wavelet coherence

analysis (WCA) to study the possible effects of climate

indices on extreme precipitation.

While the above studies have yielded encouraging out-

comes on the relationship between large-scale climate

patterns and precipitation, they have not considered the

interdependency while investigating the teleconnection

patterns. However, some of the large-scale circulation

patterns are essentially interdependent (Gan et al. 2007;

Lorenzo et al. 2008). For example, precipitation (P) might

be influenced by two variables X1 and X2, which them-

selves may be correlated. In this scenario, analysis of the

relationship between P and X1 using the wavelet coherence
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analysis inherently considers also the effect of X2. This

might result in an erroneous interpretation of the actual

relationship between P and X1. Therefore, it is important to

study the standalone effect of every climate index on pre-

cipitation separately, for a more informed and reliable

means for developing prediction models. This provides the

motivation for the present study.

The overall objectives of the present study are twofold:

(1) to detect significant interannual and interdecadal

oscillations in the extreme precipitation (estimated in terms

of the monthly maximum daily data) in India and their

teleconnections with large-scale anomalies over different

climatic regions; and (2) to estimate the standalone rela-

tionship between each climate index and the extreme pre-

cipitation in India. To achieve these, wavelet analysis and

partial wavelet coherence analysis are performed on the

daily precipitation dataset in India. Gridded daily precipi-

tation data over the period 1901–2013, provided by the

India Meteorological Department (IMD), are analysed.

The rest of this paper is organized as follows. Section 2

presents details of the Indian precipitation data and the

large-scale climate indices. Section 3 describes the math-

ematical details of wavelet analysis and its variants used in

this study. Section 4 presents the results of the application

of the wavelet methodology to the Indian daily precipita-

tion data, and a discussion of the results is made in Sect. 5.

The conclusions are briefed in Sect. 6.

2 Study area and data

The Indian precipitation patterns have been extensively

studied using the gridded daily precipitation data set at

0.25� 9 0.25� spatial resolution (Pai et al. 2015), released

by the IMD. The data are available for the period

1901–2013. Details about these data can be obtained from

http://imd.gov.in (homepage/Rainfall information). In the

present study, we use the precipitation data over this period

for investigating the influence of teleconnections on

extreme precipitation (Agarwal 2019).

At the spatial resolution of 0.25� 9 0.25�, there is a total
of 4631 grid points for the Indian subcontinent. As dif-

ferent parts of India have different climatic conditions and

precipitation patterns, it would be more appropriate to

study the teleconnections with respect to different regions.

Therefore, we divide the entire country (Fig. 1) into a

number of homogeneous regions, and examine the tele-

connections for each of the identified homogeneous

regions. For identification of homogeneous regions in the

Indian subcontinent, we use complex networks-based

community detection algorithm, following the methods

proposed by Rheinwalt et al. (2015) and Agarwal et al.

(2018); for details about the complex networks concepts,

including community structure methods, and the formation

of the homogeneous regions, the readers are directed to

Agarwal et al. (2018). Figure 1 shows seven homogeneous

regions identified, as follows: Peninsular (Community 1);

West central (Community 2); Central north east and the

Western Ghats (Community 3); North east (Community 4);

North west (Community 5); Coastal north west (Commu-

nity 6); and Hilly region (Community 7).

To analyse adequately the temporal variability in

extreme precipitation in India and to investigate the spatial

variability of the teleconnections, we consider daily pre-

cipitation data from a total of 30 grid points falling on

important cities spread across the country (as shown in

Fig. 1), and fairly evenly distributed in the seven identified

homogeneous regions. For each of these 30 grid locations,

the monthly maximum daily precipitation time series is

extracted from the daily data. The precipitation anomalies

are obtained by subtracting the monthly mean extreme

precipitation from the monthly maximum time series and

then dividing it by the standard deviation of precipitation in

that month.

In this study, three monthly climate indices of large-

scale circulation patterns are considered: ENSO (repre-

sented by Niño 3.4), PDO, and IOD. We select only these

three prominent climatic indices, as they have been shown

to have a significant relationship with the Indian monsoon

(However, the same approach detailed in the following

sections can also be used when other pertinent indices are

considered, as appropriate). The data for these three cli-

mate indices are obtained from the National Oceanographic

and Atmospheric Administration (NOAA) website: http://

www.esrl.noaa.gov/psd/data/climateindices. A brief sum-

mary of the three climate indices is presented here.

(a) The Niño 3.4 index is one of the several indices used

to measure the ENSO effect. It is estimated as the

average SST anomaly in the region bounded by 5� N
to 5� S, from 170� W to 120� W. Maity and Nagesh

Kumar (2006) and several others have shown some

notable influence of Niño 3.4 on the Indian monsoon.

(b) The PDO is an ocean-atmospheric climate index,

which recurs over the mid-latitude Pacific. Krishna-

murthy and Krishnamurthy (2016) reported the Indian

monsoon precipitation decadal oscillations to be

associated with the decadal variability of the PDO.

(c) The Indian Ocean Dipole (IOD) index is represented

by the anomalous SST gradient between the western

equatorial Indian Ocean (50� E–70� E and 10� S–10�
N) and the south eastern equatorial Indian Ocean

(90� E–110� E and 10� S–0� N). Several studies

(Ashok et al. 2004; Behera and Ratnam 2018) have

shown that IOD plays a key role in the climate of the

Indian subcontinent.
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These climate indices (and two others—NAO and

AMO) are significantly interdependent on each other (at

95% confidence levels) for the different seasons in India

(Table 1). For instance, during the southwest monsoon

season (June, July, August, and September), the relation-

ship between Niño 3.4 and PDO is found to be statistically

significant. Furthermore, Niño 3.4 and IOD have signifi-

cant correlation for some seasons.

3 Methodology

In the present study, we use the continuous wavelet

transform (CWT) to extract the dominant oscillations of the

Indian extreme precipitation and the wavelet coherence

analysis (WCA) to study the teleconnection relationship of

precipitation with the climate indices. We also employ the

partial wavelet coherence analysis (PWCA) to study the

standalone relationship between a climate index series and

Fig. 1 Map of India showing seven homogeneous climatic regions/precipitation patterns and geographic locations of 30 stations considered in

the present study
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the extreme precipitation time series. A detailed descrip-

tion of the wavelet analysis procedure is presented below.

3.1 Continuous wavelet transform (CWT)

Wavelet analysis is a multi-resolution analysis used to

obtain time–frequency representations of a continuous

signal. Wavelet analysis transforms a signal into scaled and

translated versions of an original (mother) wavelet, instead

of decomposing a signal into constituent harmonic func-

tions as in Fourier analysis. The wavelet transform is

defined as (Daubechies 1992)

Wða; sÞ ¼ 1
ffiffiffiffiffiffi

aj j
p

Z

1

�1

f ðtÞw t � s
a

� �

dt ð1Þ

where w represents the family of functions called wavelets,

t represents the instant of time, a and s are the scale and

location parameters. The above defined transform is the

continuous wavelet transform (CWT), because the scale

and time parameters, a and s; assume continuous values

(Torrence and Compo 1998). The CWT provides a

redundant representation of the signal f tð Þ; as the original

signal can be reconstructed with the minimum of W a; sð Þ
values. The reconstruction of the signal f tð Þ can be

obtained using (Daubechies 1992)

f tð Þ ¼ 1

Cw

Z

1

�1

Z

1

0

a�2W a; sð Þwa;s tð Þdads ð2Þ

where Cw is a constant and depends on the choice of the

wavelet w. Clearly, Eq. (2) suggests that the function f tð Þ
may be seen as a superposition of signals at different scales

and obtained by varying the scale parameter ‘a’.

Further, the energy of the signal f tð Þ can be represented

scale-wise as (Daubechies 1992)

Z

1

�1

f 2 tð Þdt ¼ 1

Cw

Z

1

0

Z

1

�1

Wða; sÞj j2ds

2

4

3

5

da

a2
ð3Þ

Although the left-hand side of Eq. (3) is called the

‘energy’ of the signal f(t), it is not really energy in the

physical sense, unless f(t) has the proper units. We can,

thus, interpret W a; sð Þ½ �2ds as being proportional to an

energy density function that decomposes the energy in f(t)

across different scales and times. Flandrin (1988) denoted

the function W a; sð Þj j2 as a ‘scalogram.’ For two different

functions f(t) and g(t), the product of Wf a; sð Þ and Wg a; sð Þ
may be called a ‘cross-wavelet transform’ (Lakhanpal et al.

2017), which is described next.

Table 1 Pearson correlation

coefficients between different

climate indices for different

seasons in India

Months NINO3.4 PDO IOD NAO AMO

NINO3.4 1

PDO 0.39203 1

DJF IOD 0.127694 0.006052 1

NAO - 0.0014 - 0.001 - 0.0053 1

AMO 0.045 - 0.025 - 0.005 - 0.116 1

NINO3.4 1

PDO 0.382566 1

MAM IOD 0.129083 0.072002 1

NAO 0.025 - 0.090 - 0.049 1

AMO 0.266 - 0.121 0.169 - 0.100 1

NINO3.4 1

JJAS PDO 0.500945 1

IOD 0.15391 0.0693 1

NAO - 0.0148 - 0.048 - 0.054 1

AMO 0.002 0.028 0.077 - 0.125 1

NINO3.4 1

PDO 0.375404 1

ON IOD 0.181336 0.03559 1

NAO 0.072 0.021 0.056 1

AMO - 0.081 0.040 - 0.0127 - 0.091 1

Bold indicates the correlation values are significantly different from zero at 95% confidence levels
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3.2 Cross-wavelet transform (XWT)

While, in general, wavelet transform provides an unfolding

of the characteristics of a process in the scale-space plane,

a cross-wavelet transform (XWT), on the other hand,

provides a similar unfolding of possible interactions of two

processes. Therefore, this measure can reveal the structure

of a particular process or the interactions between different

processes at different scales. The cross-wavelet transform

identifies the cross-wavelet power of two time series. For

two given discrete time series, X (n = 1, 2, …, N) and Y

(n =1, 2, …, N), the cross-wavelet spectrum, WXY , is cal-

culated as

WXY að Þ ¼ WX að Þ �WY� að Þ ð4Þ

where WX að Þ is the CWT of time series X and WY� að Þ is
the complex conjugate of WX að Þ, the CWT of time series

Y.

3.3 Wavelet coherence (WC)

The cross wavelet spectrum reveals the areas with high

common power. However, it can potentially lead to mis-

leading results, as it is just the product of two non-nor-

malized wavelet spectra (Maraun and Kurths 2004). This

can be overcome by using wavelet coherence, where the

cross spectrum is normalized with respect to the wavelet

energy of X and Y. The wavelet coherence between two

time series X and Y is given by:

R X; Yð Þ ¼ 1 W X;Yð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 W Xð Þ½ �1 W Yð Þ½ �
p

R2ðX; YÞ ¼ RðX; YÞ � RðX; YÞ�;
ð5Þ

where R X; Yð Þ is the measure of the wavelet coherence

between Y and X; R2 (X, Y) is the measure of the squared

wavelet coherence between Y and X; W (X, Y) denotes the

corresponding cross-wavelet transform; W :ð Þ denotes the

wavelet transform; and 1 denotes a smoothing operator that

can be used to balance between the desired time–frequency

resolution and statistical significance. The wavelet coher-

ence ranges from 0 to 1 and measures the cross-correlation

of two time series as a function of frequency (Torrence and

Compo 1998), i.e. local correlation between the time series

in time–frequency space. It can be interpreted as a

decomposition of correlation coefficient at a different scale

(Agarwal et al. 2016); the closer the value to 1, the more

the correlation between the two series.

3.4 Partial wavelet coherence analysis (PWCA)

Partial wavelet coherence analysis (PWCA) is a technique

similar to the partial correlation analysis that helps to find

the resulting wavelet coherence between two time series X

and Y after eliminating the influence of the time series Z.

Mihanović et al. (2009) extended the concept from simple

linear correlation and suggested that the square of PWC

(after the removal of the effect of Z) can be defined by an

equation similar to the square of partial correlation, which

is like the simple wavelet coherence, ranging from 0 to 1,

and is given by

RP2 X; Y jZð Þ ¼ R X; Yð Þ � R X; Zð Þ:R X; Yð Þ�j j2

1� R X; Zð Þ½ �2 1� R Y; Zð Þ½ �2
ð6Þ

where R (.,.) denotes the wavelet coherence between the

two variables and RP2(X, Y|Z) is the square of the partial

wavelet coherence between X and Z when the influence of

Y is excluded. Its proximity to zero at a certain time–fre-

quency point indicates that the series Z does not add sig-

nificant information to X, i.e. the information that is not

already incorporated from Y at that point. If the square of

the partial wavelet coherence is high for Y and not for Z,

this would imply that important covariance exists between

Y and X during that time interval at a designated wavelet

scale (period) and, moreover, that X is dominantly influ-

enced by Y and not by Z. If both RP2(X, Y|Z) and RP2(X,

Z|Y) still have significant bands, both Y and Z have a sig-

nificant influence on X.

In the present study, we adopt the Grinsted Toolbox for

wavelet coherence analysis and the toolbox provided by Ng

and Chan (2012) for PWCA. In all the analyses, we use the

95% significance levels.

4 Results

4.1 Wavelet analysis

To understand the variability of extreme precipitation with

reference to time, Continuous Wavelet Transform (CWT)

analysis is performed using the ‘Morlet’ wavelet. The

Morlet wavelet is chosen for analysis because it is a widely

used complex wavelet and has a better time–frequency

localization than other real wavelets (Addison 2005).

However, it is also relevant to note that the choice of the

wavelet does not make much difference in this kind of

multiscale coherence analysis (Foufoula-Georgiou and

Kumar 1994; Gan et al. 2007).

Figure 2 presents the wavelet coefficients obtained from

the CWT for the extreme precipitation at seven selected

grids/cities (one grid from each homogeneous region):

Chennai, Bangalore, Varanasi, Dibrugarh, Delhi, Gandhi-

nagar, and Jammu; see Fig. S1 for all the 30 grids. The

thick contour lines enclose regions of statistically signifi-

cant wavelet power in the time–frequency space at a 5%
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significance level of a red noise process (Grinsted et al.

2004). Significant interannual oscillations (4–8 years)

occurred in the 1900s to 1980s at Varanasi (North India).

Interdecadal oscillations ([ 8 years) were active from

1920s to 1970s in Dibrugarh (Northeast), from 1950s to

2000s in Jammu (far North) and from 1950s to 1990s in

Gandhinagar (West). In the case of Chennai (Southeast),

Delhi (North) and Bangalore (South central), it can be

observed that there are some intermittent high power

regions at 2–4 years and 4–8 years scales. These

figures clearly show the spatial variability of the precipi-

tation extremes and the corresponding dominant

oscillations.

Figure 3 presents the wavelet coefficients from the

CWT for the three climate indices (Niño 3.4, PDO, and

IOD) to understand the dominant oscillations that are

active in each index. It can be observed that the Niño3.4 is

characterised by 2–4 years and 4–8 years oscillations.

However, these oscillations are not stationary with respect

to time. Even though there is evidence of 8–16 years

oscillations, it is not statistically significant. The CWT of

Fig. 2 Wavelet power spectra of extreme precipitation time series from seven locations (one from each of the seven homogeneous regions) with

the 95% confidence level. The thick black contours depict the 95% confidence level of local power relative to a red noise background

Fig. 3 Continuous wavelet spectrum of the climate indices, a Niño 3.4; b PDO; c IOD with the 95% confidence level. The thick black contours

depict the 95% confidence level of local power relative to a red noise background
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the PDO reveals that it is generally characterised by sig-

nificant large-scale decadal oscillations in the order of

16–32 years. We can also observe a short-term oscillation

at 4–8 years active only for the period from 1935 to 1960.

In the case of the IOD, there is evidence of intermittent

significant oscillations at 4–8 years from 1960 to 1970 and

at 2–4 years from 1990 to 2000.

4.2 Wavelet coherence analysis (WCA)

The wavelet coherence analysis (WCA) is used to statis-

tically estimate the linkages between extreme precipitation

and the selected climate indices. Figures 4, 5, and 6 show

the results for the above seven grids/cities for ENSO, PDO,

and IOD, respectively (see Figs. S2–S4 for all the 30

grids). The black contours in these figures represent periods

of statistically significant coherence of a thick red noise

process at 5% significance levels (Grinsted et al. 2004). It

is important to note that significant coherence between two

signals do not necessarily mean that the powers of the two

signals are also statistically significant, but rather that it

might be showing significant coherence.

A significant coherence between Niño 3.4 and precipi-

tation anomalies at the scale of 2–4 years, 4–8 years and

8–16 years is present (Fig. 4). However, interannual

coherence is of short duration and transient in nature. This

may be attributed to the fact that Niño 3.4 episodes are

mostly short-lived. For example, in the case of Chennai,

strong coherence is observed during the periods

1953–1956, 1970–1971, 1982–1990, and 1998–2000. It is

also observed that these time periods were matching with

the La Niña incident years. From these wavelet coherence

plots, we can locate the time periods of high coherence,

weakening coupling or even the absence of significant

coupling between Niño 3.4 and precipitation. Following a

similar analysis for the other stations shown in Fig. 4, it

can be observed that the coherence between Niño 3.4 and

precipitation has become stronger in the recent decades (as

shown by the yellow areas after 1960) in most parts of the

country except for the northern parts (e.g. Delhi). The

wavelet coherence plots for different regions differ sig-

nificantly (Fig. S2). Precipitation at some stations, such as

Madurai, Bangalore, Varanasi, Delhi, and Jaipur, does not

have significant coherence with Niño 3.4 at 16–32 years

scale, whereas other stations, such as Chennai, Kolkata,

Gandhinagar, Bandhra, and Shillong, have significant Niño

3.4 influence at that larger scale.

Comparing PDO with the extreme precipitation at the

seven locations with the wavelet coherence reveals a con-

sistent significant coherence at larger scales of the order of

8–16 years, indicating a high correlation between extreme

precipitation and PDO at these scales (Fig. 5; see Fig. S3

Fig. 4 Wavelet coherence spectra between extreme precipitation

from seven locations (one from each of the seven homogeneous

regions) and Niño 3.4. The thick contour lines enclose periods with

statistically significant coherence with reference to a red noise process

at 5% significance level
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Fig. 5 Same as Fig. 4, but with PDO as the climate index

Fig. 6 Same as Fig. 4, but with IOD as the climate index
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for all 30 locations). Apart from this consistent long-term

feature, there are only a few intermittent high-power

regions.

The WCA between extreme precipitation and IOD for

the seven locations indicates a significant coherence

between the extreme precipitation and IOD for the majority

of the locations at interdecadal scales of order of

16–32 years (Fig. 6; see Fig. S4 for all 30 locations). At

some locations, such as Chennai, Bengaluru, Gandhinagar,

and Jammu, there is a significant but intermittent high

coherence at 2–4 and 4–8 years. In this case, also, the

spatial variability of the wavelet coherence between the

extreme precipitation and IOD is high. For example, there

is no coherency between extreme precipitation and IOD at

Delhi, whereas there is a statistically significant coherence

between the two in, for example, Jammu, Wardha, and

Aligarh.

The above results reveal the spatial and temporal vari-

ability in the relationship between extreme precipitation in

India and the three climate indices. The results from the

wavelet coherence analysis suggest that extreme precipi-

tation is related to all the three climate indices (Niño 3.4,

PDO, and IOD), but at different scales and at varying

degrees. However, it should be noted that there is a sig-

nificant level of interdependence among the climate indi-

ces, as shown in Table 1. Therefore, for a still better

understanding of the dynamics of the influence of the cli-

mate indices on extreme precipitation, it is also necessary

to understand the standalone effect of the indices on the

extreme precipitation. To this end, we perform the Partial

Wavelet Coherence Analysis (PWCA), and the results are

presented next.

4.3 Partial wavelet coherence analysis (PWCA)

Several past studies have established relationships among

the climate indices, especially the influence of ENSO. For

instance, Hanley et al. (2003) showed the dependence of

PDO on ENSO events (Niño 3.4), and Ashok et al. (2004)

discussed the relationship between IOD and ENSO events

(Niño 3.4 or SOI). These studies indicate that ENSO events

(Niño 3.4 or SOI) play an influencing role in controlling the

other climate indices. From this perspective, we now

remove the effect of Niño 3.4 and examine only the

coherence between the standardized extreme precipitation

and each of the other two climate indices (PDO and IOD).

This would also help in understanding the standalone effect

of PDO and IOD on Indian extreme precipitation.

We start with the WCA between the extreme precipi-

tation and the PDO when removing the effect of Niño 3.4.

Figure 7 presents the results for the seven grids/cities (see

Fig. S5 for all the 30 locations). A visual comparison of

these results with wavelet coherence between PDO and

extreme precipitation (Fig. 5) shows a significant reduction

in the high power regions in the PWC (Fig. 7). Also, for

most of the stations, there is no significant coherence

between the extreme precipitation and PDO when the

influence of Niño 3.4 is removed. For example, in the case

of Gandhinagar and Jammu, a significant coherence

between extreme precipitation and PDO at 8–16 and

16–32 years scale is observed when the influence of Niño

3.4 is yet included (Fig. 5), but it is missing without Niño

3.4 (Fig. 7). Similar observations are also made for the

other stations (refer to Fig. S5). These reductions in the

spatial areas of coherence imply that ENSO significantly

contributes to the relationship between extreme precipita-

tion and PDO. This is in accordance with the results

reported by Wang et al. (2013), who showed that under the

influence of ENSO, the variability of the PDO is slightly

increased at the interannual timescale, but also shifts the

PDO to a lower frequency at the decadal timescale. This

also suggests that the variability of the Indian precipitation

is forced by ENSO (Niño 3.4) via the influence of PDO,

thus supporting the reports by Li et al. (2017) and Krish-

namurthy and Krishnamurthy (2014).

Similarly, we consider the wavelet coherence between

the extreme precipitation and IOD for the above seven

locations after removal of Niño 3.4 (Fig. 8; see Fig. S6 for

all 30 locations). Unlike the case with PDO, there are no

significant changes in the wavelet coherence plots between

the extreme precipitation and IOD before and after the

removal of the effect of Niño 3.4. For example, comparing

these two situations for Chennai (see Figs. 6, 8), no

noticeable change in the significant coherence between the

extreme precipitation and IOD is detected. This is also the

case for the majority of the stations under investigation as

well. These results imply that the Niño 3.4 and IOD operate

at distinct modes and that the development and influence of

IOD are independent of Niño 3.4. Similar observations

were also made by, for example, Ashok et al. (2004) and

Wang et al. (2017), who showed that the IOD and Niño 3.4

are independent factors influencing the Indian monsoon.

4.4 Reconstruction of oscillatory modes
and spatial variability

To further understand the teleconnections of precipitation

variability, modes at significant scales are extracted from

the precipitation time series, and correlation with oscilla-

tions associated with Niño 3.4 and IOD is estimated (We

do not present the results for PDO, since it is influenced by

Niño 3.4). For this purpose, the wavelet coefficients are

reconstructed at 2–4 years, 4–8 years, and 8–16 years

bands.

The reconstructed bandpass component of the extreme

precipitation and the climate indices are compared for all
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Fig. 7 Partial wavelet coherence spectra analysis between extreme

precipitation from seven locations (one from each of the seven

homogeneous regions) and PDO after removal of the influence of

Niño 3.4 on precipitation. The black contour lines indicate the periods

of statistically significant coherence with reference to red noise

process

Fig. 8 Partial wavelet coherence spectra analysis between extreme

precipitation from seven locations ((one from each of the seven

homogeneous regions) and IOD after removal of the influence of Niño

3.4 on precipitation. The black contour lines indicate the periods of

statistically significant coherence with reference to red noise process
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the stations at seven different temporal scales: 2, 4, 8, 16,

32, 64, and 128 months. However, sample results are

shown only for one station (Chennai, Figs. 9, 10). The

results from the above analysis are presented for all the grid

locations (Fig. 11) for the three indices in the form of a

colour map of correlation coefficients at the three different

scales considered above, i.e. 2–4 years (top), 4–8 years

(middle), and 8–16 years (bottom). At all the scales, it is

important to note that, the regions of significant correlation

are similar for both Niño 3.4 and PDO, which reemphasize

the results obtained from PWCA. It is also observed that

the spatial correlation between the reconstructed modes of

climate indices and precipitation at the different scales is

nearly opposite. This might be possibly due to the negative

and positive phase present in Niño 3.4, which gets captured

at different timescales. Table 2 summarizes this in the form

of percentage area having a significant positive or negative

correlation with the climate indices. Here also, the results

obtained from Niño 3.4 and PDO are very close, whereas

distinct regions of significant correlation are obtained for

Niño 3.4 and IOD.

The above results indicate that there is a generally

negative association between precipitation modes and Niño

3.4 oscillations in almost all regions across India. However,

the scale and nature of the association are spatially vari-

able. For example, at 2–4 years scales, a negative corre-

lation was observed between the two in the northern part

during the period studied (1901–2013), whereas a positive

correlation was observed in the southern part. Our results

also reveal that a significant association existed only at

long-term scales of the order of 8–16 years with IOD and

at comparatively short-term scales of the order of

2–4 years and 4–8 years with Niño 3.4. The effect of Niño

3.4 and IOD was complementary to each other (Table 2).

In the case of 2–4 years scale, the percentage area with

positive (negative) Niño 3.4 influence was 17% (8%).

However, the percentage area with negative (positive) IOD

influence was 34% (6%). Finally, the results also reveal

that the spatial variability of Niño 3.4 and PDO has almost

the same patterns, which clearly strengthens the under-

standing that PDO’s influence on Indian precipitation is not

independent, rather it is through ENSO (Niño 3.4).

Fig. 9 Wavelet decomposition of Ni~no 3.4 (blue) and extreme

precipitation (red) of one sample station (Chennai) at different

temporal scales: a 2 months, b 4 months, c 8 months, d 16 months,

e 32 months, f 64 months, g 128 months. The horizontal axis denotes

the time in months and the vertical axis denotes the magnitude of the

signal
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5 Discussion

The wavelet analysis of the extreme precipitation across 30

locations in India showed that dominant oscillations were

found at 2–4 years, 8–16 years, and interdecadal scales.

These oscillations were also found to vary with time and be

short-lived. The wavelet coherence of the precipitation

extremes with three prominent large-scale atmospheric

circulation patterns, namely Niño 3.4, PDO, and IOD,

revealed that Niño 3.4 had a significant coherence at 2–4

and 4–8 years scales, with most parts of the country

showing that Niño 3.4 was responsible for the interannual

variability in India. However, the influence of Niño 3.4 was

not the same in all parts of the country. The precipitation in

the eastern parts was significantly influenced by Niño 3.4,

whereas the western and far north regions were not sig-

nificantly affected by the Niño 3.4 oscillations. There were

evidences of strong coherence at 8–16 years scale in the

eastern parts of the country, which might be credited to the

fact that interdecadal variations of Niño 3.4 teleconnec-

tions over the Indo-western Pacific is mainly governed by

Niño 3.4 variance itself (Chowdary et al. 2012; Chowdhury

and Beecham 2013).

Several studies (Kinter et al. 2002; Krishnamurthy and

Krishnamurthy 2014) have proposed possible mechanisms

linking the decadal change of the Niño 3.4-monsoon sys-

tem to another large-scale climate variability. For example,

Kinter et al. (2002) related this change to north Pacific SST

and atmospheric circulation. Krishnamurthy and Krishna-

murthy (2014) showed that the PDO could enhance

(counteract) the Niño 3.4-monsoon relation when Niño 3.4

and PDO are in (out of) phase. The PWCA between the

extreme precipitation and PDO after removing the effect of

Niño 3.4 showed that the PDO did not have significant

coherence between the precipitation events. This implies

that PDO does not have direct influence over the decadal

variability of precipitation, but rather that it has an indirect

relation to enhancing the Niño 3.4-monsoon relationship,

further supporting the observation made earlier by Krish-

namurthy and Krishnamurthy (2014).

With reference to the relationship between the extreme

precipitation and IOD, the wavelet coherence analysis

showed that the IOD had a significant contribution to the

precipitation variability at both interannual and decadal

scales. Further, the PWCA analysis of precipitation and

IOD after removing the effect of Niño 3.4 suggested that

IOD events happened independently of Niño 3.4. This is in

Fig. 10 Wavelet decomposition of IOD (blue) and extreme precip-

itation (red) of one sample station (Chennai) at different temporal

scales: a 2 months, b 4 months, c 8 months, d 16 months,

e 32 months, f 64 months, g 128 months. The horizontal axis denotes

the time in months and the vertical axis denotes the magnitude of the

signal
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line with the findings by some earlier studies (e.g. Ashok

et al. 2004; Wang et al. 2016). For instance, Wang et al.

(2016) showed that the climate model simulations without

Niño 3.4 produced the most salient observed features of

IOD even without Niño 3.4, including the relationships

between the eastern and western poles at both the surface

and the subsurface, as well as their seasonality. This sug-

gests that Niño 3.4 is not fundamental to the existence of

IOD. It is possible that the anomalies associated with IOD

events are initiated through local wind response from the

Fig. 11 Spatial variability of the correlation between the reconstructed modes of extreme precipitation and different climate indices at scales of

2–4 years (top), 4–8 years (middle) and 8–16 years (bottom)
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Indian Ocean. This understanding is in agreement with the

results reported by Ashok et al. (2004), who showed that

the Indian Ocean Dipole Index is significantly coherent

with the equatorial zonal winds in the central Indian Ocean.

The coherence plots showed that coupling between

extreme precipitation and Niño 3.4 had become stronger in

the latter half of the time period studied (particularly after

1970). Cherchi and Navarra (2003) obtained similar results

using a different approach and explained that this kind of

behavior may be due to the changes occurred in the North

Pacific after 1976 (Miller et al. 1994) and to the associated

differences in the Niño 3.4 teleconnections (Deser and

Blackmon 1995).

The results from the present study also revealed the

existence of a complementary relationship of spatial vari-

ation of the association of precipitation with Niño 3.4 and

IOD in most parts of India, except central India. However,

in some parts of central India (including the eastern and

western parts), the Niño 3.4 and IOD simultaneously

influenced the precipitation but at different temporal scales.

Further, it was observed that the coastal regions of penin-

sular, northeastern, and western regions were more sig-

nificantly affected by Niño 3.4 and IOD in comparison with

their counterparts in the inland region.

6 Conclusions

The wavelet analysis of the extreme data from gridded

precipitation time series during 1901–2013 from different

regions in the Indian sub-continent showed that the domi-

nant oscillations varied both spatially and temporally. The

present study examined, for the first time, the teleconnec-

tion between the interannual and interdecadal oscillations

in extreme precipitation in India and three prominent

atmospheric circulation patterns, namely Nino 3.4, PDO,

and IOD. Wavelet analysis and its variants were employed.

Important findings and conclusions are as follows:

1. The results from the application of the wavelet

transform to extreme precipitation indicated that

decadal and interdecadal oscillations (8–16 years

and[ 16 years) were more significant than interannual

(2–8 years) oscillations for the majority of the 30

stations studied. The oscillations varied both spatially

and temporally at all the scales considered.

2. For all the seven homogeneous regions in India

(identified by Agarwal et al. (2018)), the high-power

wavelet coherence plots showed that the linkages

between precipitation and the large-scale climate

indices were time- and space-dependent. The partial

wavelet coherence analysis also revealed two interest-

ing findings:

(a) There was a significant contribution of the Niño

3.4 to the relationship between extreme precip-

itation and the PDO. In other words, although

PDO is a significantly important large-scale

circulation pattern, it does not have direct

linkage with the precipitation extremes in India.

Rather, its influence is associated with its

modulations with Niño 3.4 events.

(b) Niño 3.4 and IOD were found to operate at

distinct modes, and the development and influ-

ence of IOD were found to be independent of

Niño 3.4. This observation is consistent with the

results reported by earlier studies (e.g. Wang

et al. 2016).

The results from the present study provided insights

regarding the coupled behaviour of extreme precipitation in

the Indian subcontinent with the changes in Niño 3.4 and

IOD indices. The findings from this study can be useful for

climate scientists to get a better understanding about the

relationships between the extreme precipitation and atmo-

spheric patterns. Further, this study also illustrated the

importance of PWCA in such analysis.
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