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Abstract – Self-organization driven by feedback between subsystems is ubiquitous in turbulent
fluid mechanical systems. This self-organization manifests as emergence of oscillatory instabilities
and is often studied in different system-specific frameworks. We uncover the existence of a univer-
sal scaling behaviour during self-organization in turbulent flows leading to oscillatory instability.
Our experiments show that the spectral amplitude of the dominant mode of oscillations scales
with the Hurst exponent of a fluctuating state variable following an inverse power law relation.
Interestingly, we observe the same power law behaviour with a constant exponent near −2 across
various turbulent systems such as aeroacoustic, thermoacoustic and aeroelastic systems.

Copyright c⃝ EPLA, 2020

Introduction. – A large number of physical systems
involve turbulent flows that have chaotic variations in
properties such as pressure and velocity. Turbulent flows
are characterized by eddies of different length and time
scales that interact nonlinearly. The transfer of energy
across eddies of different length scales takes place through
various cascade processes [1,2]. A unique collective be-
haviour can often arise from the interaction of multiple
subsystems resulting in various phenomena at many dif-
ferent scales. Turbulent flow systems can therefore be re-
garded as a complex system. Although turbulent flows are
chaotic, self-organization due to feedback in such a com-
plex system can cause the emergence of order from chaos.

Self-organization is a fundamental property of a com-
plex system, where some form of macroscopic order
emerges from interactions between subsystems of an ini-
tially disordered system. In turbulent flows, spatially
extended patterns such as large coherent structures are
formed due to self-organization, for example, devas-
tating cyclones in atmospheric flows. Self-organization
driven by feedback between subsystems in turbulent sys-
tems can lead to oscillatory instabilities as observed

in thermoacoustic [3], aeroacoustic [4], and aeroelastic
systems [5]. These oscillatory instabilities cause high-
amplitude vibrations which may incur catastrophic effects
in engineering systems. In the present work, we study
the emergence of such oscillatory instabilities in three dif-
ferent fluid mechanical systems, namely thermoacoustic,
aeroacoustic, and aeroelastic systems.

Feedback between turbulent flow and other subsystems
is often the cause for oscillatory instabilities. Thermoa-
coustic instability, a state of self-sustained large-amplitude
periodic oscillations in the state variables, arises due to
the nonlinear coupling between the reactive flow field and
the acoustic field in a confinement [6]. This phenomenon
can cause structural damages due to the increased ther-
mal and vibrational loads, forcing shutdown of gas turbine
engines [6,7], or failure of rockets [8]. Similarly, aeroa-
coustic instability is caused by the interaction between
the acoustic field in a confinement and vortex shedding in
turbulent flows [4]. Examples include the pleasant sounds
generated in a flute or the destructive large-amplitude os-
cillations established in gas-transport pipelines [9]. Aeroe-
lastic instability occurs as a consequence of the interaction
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of the flow with the structural elements of the system [5],
e.g., the catastrophic collapse of the Tacoma Bridge [10].
The transition to such oscillatory instabilities from a
state of chaotic oscillations in turbulent systems occurs
via intermittency [11–13]. We attribute the emergence
of ordered periodic oscillations from high-dimensional
chaos to self-organization due to feedback between
subsystems.

Conventionally, oscillatory instabilities in fluid mechan-
ical systems are modeled as a transition from a stable fixed
point to periodic oscillations (i.e., Hopf bifurcation) as the
control parameter is varied. According to linear theory,
the amplitude grows exponentially during this transition,
but then nonlinearities kick in and the amplitude satu-
rates. In the study of such oscillatory instabilities, the
effects of turbulence are often considered as background
noise and are neglected in the traditional “signal plus
noise” approach.

For turbulent flows, the stable operating point is never
quiet, but is instead characterized by low amplitude fluctu-
ations arising due to the presence of turbulence. Recently,
for turbulent fluid mechanical systems, the stable op-
erating state with aperiodic fluctuations was identified
as high-dimensional deterministic chaos [14]. This state
with underlying turbulent fluctuations possesses inher-
ent complexity and multifractal characteristics [15,16].
Recent studies have shown that treating these fluctu-
ations with their inherent complexities (as opposed to
considering them as noise) is very rewarding in terms
of obtaining precursors to such instabilities in practical
application [11–13].

Further, a state of intermittency presages the
self-sustained periodic oscillations in turbulent fluid
mechanical systems [11–13]. The emergence of oscillatory
instabilities in fluid mechanical systems may then be re-
garded as the loss of complexity in the dynamics [15,16].
Thus, considering the emergence of oscillatory instabil-
ities from turbulence as a linear stability problem may
not be the most appropriate and useful way, because ev-
ery mode is already unstable in a turbulent system [17].
A more comprehensive way is to view the onset of oscil-
latory instabilities in a turbulent fluid mechanical system
as order emerging from chaos using the framework of self-
organization due to feedback between subsystems.

We explore the scaling behaviour of such self-
organization leading to oscillatory instabilities in
turbulent fluid mechanical systems. The proximity to
the onset of oscillatory instability in each system is
quantified using the Hurst exponent (H) which also
serves as a system-independent parameter to study the
scaling behaviour of self-organization. An unsteady
variable of each of the three systems is measured as we
vary an appropriate system-specific control parameter to
approach oscillatory instability. We estimate H, which is
related to the fractal dimension (D) as H = 2 − D, for
the time series corresponding to each state [18].

Fig. 1: Schematic of the experimental setups. (a) Turbu-
lent combustor (thermoacoustic system) exhibiting transition
to thermoacoustic instability. (b) An aeroacoustic system with
two orifices. Vortices are shed when the turbulent flow passes
through the orifices. In both of these systems, we measure
the acoustic pressure fluctuations inside the duct during the
transition to thermoacoustic/aeroacoustic instability. (c) An
aeroelastic system where the left end of the beam has a small
vertical fin attached to it. When a jet of air passes along the
length of the cantilever from left to right, vortices are shed from
the fins. We measure the resulting strain on the cantilever close
to the fixed end of the beam. In all the cases, Reynolds num-
ber (Re) is varied as the control parameter to attain different
dynamical states.

Experiments. – We analyze data from thermoacous-
tic, aeroacoustic and aeroelastic systems to study the
transition from stable operation to oscillatory instabilities
by changing the respective control parameters. In this
section, we describe the experiments briefly. More details
including the uncertainties of all measurements and the
calculation of Reynolds number are provided in the Sup-
plementary Material Supplementarymaterial.pdf (SM).

Experiments on thermoacoustic system. The
schematic of the experimental setup is shown in
fig. 1(a). The setup consists of a settling chamber,
a burner, a flame holding device and a combustion
chamber with variable duct length. The length of the
combustion chamber is varied to achieve different acoustic
length scales and timescales. Also, the combustor can be
equipped with different flame stabilization mechanisms.
The flame holding device (a bluff body or a swirl) is
attached to the burner by a central shaft. Then, there
is a sudden expansion from the circular burner to a
square chamber. In this present work, data is presented
for a bluff-body stabilized combustor for two lengths:
700mm and 1400mm. As opposed to this configuration,
we also present data for a swirl stabilized combustor of
length 700mm. The two flame stabilizing mechanisms
render completely different flow physics in the combustor
leading to different mechanisms causing thermoacoustic
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instability [19,20]. Liquified petroleum gas (LPG: butane
60% and propane 40% composition by mass) is used
as the fuel. Air is partially premixed with LPG before
the reactant mixture enters the combustion chamber.
We ignite this fuel-air mixture using a spark plug. We
decrease the equivalence ratio in order to attain different
dynamical states in the system. The equivalence ratio is
defined as φ = (ṁf /ṁa)actual

(ṁf /ṁa)stoichiometry
, where ṁf and ṁa are

the mass flow rates of fuel and air, respectively. The mass
flow rate of air is increased by keeping the mass flow rate
of fuel constant to decrease φ.

As we approach thermoacoustic instability, the small
vortices in turbulent reactive flows interact with each
other, with the flame and with the acoustic field creat-
ing larger coherent structures. This emergent coherent
dynamics in the flow field leads to the establishment of a
coherent acoustic field which, in turn, affects the pattern of
vortex shedding. Such alteration in the flow also changes
the coupling between the subsystems. During thermoa-
coustic instability, the inter-subsystem interaction is very
strong and a stable spatio-temporal pattern is formed due
to self-organization, accompanied by large amplitude pres-
sure oscillations [21]. The thermoacoustic data analyzed
in this study are reported in Nair and Sujith [15], Nair
et al. [11] and Unni and Sujith [22]. More detailed descrip-
tions of the experiments can be found in these references.

The Reynolds number (Re) is considered as the control
parameter and Re increases as we increase the mass flow
rate of air. We choose a range of Re values for different
configurations so as to achieve the transition from the low-
amplitude aperiodic fluctuations to the high-amplitude
limit cycle oscillations. For the bluff body stabilized
combustor of length 700mm (frequency of oscillations,
f ∼ 250Hz), Re is varied from (1.81 ± 0.052) × 104

to (2.8 ± 0.073) × 104 . For bluff body stabilized com-
bustor of length 1400mm (f ∼ 120Hz), Re varies from
(1.96 ± 0.006) × 104 to (3.53 ± 0.099) × 104 . Re variation
for swirl stabilized combustor (length = 700mm and f ∼
250 Hz) is from (1.61±0.041)×104 to (1.96±0.060)×104 .
The unsteady pressure fluctuations inside the combustion
chamber are measured using piezoelectric transducers at
different values of Re in the above-mentioned ranges. The
transducer is located at the antinode of pressure oscilla-
tions which is near the backward facing step. This location
helps us to record the maximum amplitude of the standing
wave. The pressure data is sampled at a rate of 10 kHz.

Experiments on aeroacoustic system. Another fluid
mechanical system exhibiting oscillatory instability aris-
ing out of a turbulent flow field is an aeroacoustic system.
Typically, it consists of orifices located inside a duct. Vor-
tices are shed when the turbulent flow passes through the
orifices. The interaction between the vortex shedding and
the acoustics inside the duct determines the dynamics of
the aeroacoustic system. The schematic of the aeroacous-
tic experimental setup is shown in fig. 1(b). The current
experimental setup consists of a cylindrical chamber, two

pipes (lengths: 300mm and 225mm, respectively), and
two circular orifices of diameter 20mm each, thickness
2.5mm and separated by a distance of 18mm (a zoomed
view is shown in the circle). The turbulent flow enters
the pipe through the large cylindrical chamber, referred
to as the decoupler, which isolates the duct from the up-
stream pressure fluctuations. Thus, the pressure at both
ends of the duct is maintained at the ambient pressure.
The experiments are conducted by increasing the Re from
5615 ± 185 to 9270 ± 212. Here, f varies from 484Hz
to 540Hz as we increase the velocity of the inlet flow.
We measure the pressure fluctuations inside the duct at a
distance of 100mm from the second orifice. The data is
sampled at a rate of 10 kHz.

Experiments on aeroelastic system. In a similar man-
ner, we study the transition to aeroelastic instability in a
laboratory scale aeroelastic system (fig. 1(c)). The exper-
imental setup consists of a cantilever beam having 45mm
length, 25mm width and 0.5mm thickness. The right side
of the beam is fixed, and the left side of the beam is free.
Note that the left end of the beam has a small vertical
fin (12mm length) attached to it, akin to a winglet of an
aircraft wing. When a jet of air passes along the length of
the cantilever from left to right, vortices are shed from the
fins. These vortices impart unsteady aerodynamic load to
the cantilever. We measure the resulting strain on the
cantilever close to the fixed end of the beam (5mm from
the fixed end), using a strain gauge. For particular flow
rates, the oscillations in the cantilever beam become peri-
odic and self-sustained, resulting in aeroelastic instability.
Here, we increase Re from 2384±159 to 4768±111 to cap-
ture the transition to aeroelastic instability (f ∼ 60Hz).
We record the strain data corresponding to the structural
vibrations in the system for different values of the control
parameter.

Results. – We analyze the time series of acoustic pres-
sure fluctuations during the transition to oscillatory insta-
bilities for thermoacoustic and aeroacoustic systems. In
the case of the aeroelastic system, we analyze the time
series of strain experienced by the structure. In this work,
we study the transition to oscillatory instabilities in the
following different cases: i) a bluff body stabilized combus-
tor of length 700mm, ii) and one of length 1400mm, iii) a
swirl stabilized combustor of length 700mm, iv) an aeroa-
coustic system and v) an aeroelastic system. We choose
these systems as they have different mechanisms for on-
set of oscillatory instability and have different levels of
turbulence, amplitude and frequency of oscillations. The
first three cases are for thermoacoustic system and in the
first two cases, the length of the combustor is varied to
achieve different acoustic timescales. Similarly, different
flame stabilizing mechanisms are used to generate differ-
ent mechanisms leading to oscillatory instability.

In fig. 2, we show representative datasets from all the
three systems.
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Fig. 2: Time series of state variables during the transition to oscillatory instability. (a)–(c) Data representing the acoustic
pressure fluctuations acquired from a bluff body stabilized combustor of length 700 mm. The corresponding Re for (a), (b)
and (c) are (1.9 ± 0.053) × 104, (2.6 ± 0.069) × 104 and (2.8 ± 0.073) × 104, respectively. (d)–(f) Acoustic pressure fluctuations
acquired during the transition to aeroacoustic instability (Re = 5615 ± 185, 7283 ± 198 and 9270 ± 212 corresponding to (d),
(e) and (f)). (g)–(i) The time series of strain experienced by the cantilever in the aeroelastic system as we vary Re (2384± 111,
3972 ± 142 and 4768 ± 159). In all the systems, we observe a transition from low-amplitude aperiodic fluctuations ((a), (d)
and (g)) to high-amplitude periodic oscillations ((c), (f) and (i)) via a regime of intermittency where intermittent bursts of
high-amplitude periodic oscillations appear in a nearly random fashion amidst epochs of low-amplitude aperiodic fluctuations
((b), (e) and (h)) as we vary the control parameters (Re increases from top to bottom). The transition from aperiodicity to
periodicity always occurs via a regime of intermittency for other configurations of these systems as well.

I) Figure 2(a)–(c) shows the acoustic pressure fluctua-
tions in a thermoacoustic system (case i)) during the
transition to thermoacoustic instability. Figure 2(a)
corresponds to a chaotic state far from the oscillatory
instability. The time series consists of low-amplitude
aperiodic fluctuations. Recently, Tony et al. [14]
showed that these aperiodic fluctuations have fea-
tures of high-dimensional chaos contaminated with
white and coloured noise. Nair et al. [11] discovered
that the transition to thermoacoustic instability oc-
curs through a state of intermittency, which contains
epochs of high-amplitude periodic oscillations amidst
low-amplitude aperiodic oscillations (fig. 2(b)). Ther-
moacoustic instability (fig. 2(c)) corresponds to a
state of high-amplitude periodic oscillations. We ob-
serve a similar behaviour for all the above-mentioned
combustor configurations during the transition to
thermoacoustic instability.

II) Figure 2(d)–(f) shows the time series of pres-
sure fluctuations corresponding to the transition to

aeroacoustic instability. The temporal behaviour of
acoustic pressure during this transition is similar to
that in the thermoacoustic system, despite the fact
that the amplitude levels in both systems differ by
orders of magnitude.

III) Figure 2(g)–(i) represents the time series of strain ex-
perienced by the structure during the transition to
aeroelastic instability. The observed oscillations are
similar to those of the thermoacoustic and aeroacous-
tic systems, even though we are measuring a com-
pletely different unsteady variable.

From fig. 2, we clearly see that these turbulent systems
considered here follow an intermittency route to oscilla-
tory instability. We observe a similar transition in all
the three classes of systems even though the interact-
ing subsystems and the physical mechanisms involved are
different.

Next, we quantify the proximity to the onset of oscilla-
tory instability in the discussed systems using the Hurst
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exponent (H ). As mentioned earlier, the periodic con-
tent in time series of the unsteady variable increases as
we approach an oscillatory instability. The state of low-
amplitude aperiodic oscillations has a fractal nature which
is born out of the inherent fractal nature of turbulence. As
the system self-organizes into oscillatory instability, the
fractal time series transitions to a more regular periodic
signal [15]. We capture the variation of fractal characteris-
tics of the time series by calculating H following the multi-
fractal detrended fluctuation analysis (detailed in the SM).

The Hurst exponent represents the scaling of the rms
of the standard deviation of fluctuations with the scale
size or the time interval considered for obtaining the fluc-
tuations. Generally, H has values between 0 and 1 for
time series (i.e., fractal dimension between 1 and 2). It
provides a measure of persistence in a time series. For a
persistent time series wherein subsequent values are highly
correlated, H > 0.5. An antipersistent signal has H < 0.5,
in which a high value of the signal is most likely followed
by a low value. H = 0.5 corresponds to an uncorrelated
random process.

In our analysis, we compute H for the time series
corresponding to the unsteady variable obtained at each
state during the transition to oscillatory instability in
thermoacoustic, aeroacoustic and aeroelastic systems.
H for each state is calculated from the time series divided
into segments of selected duration. The choice of the
range of scale (or segment length) should be optimal to
capture the transition from an aperiodic to a periodic
state [23]. The periodicity at the onset of oscillatory
instability will not be captured if we select segments
of the length corresponding to less than one cycle of
oscillation. Further, the fluctuations will be averaged
out if we choose segments with a large number of cycles.
Therefore, we choose two to four cycles of oscillations
during the periodic regime as the optimum scale.

In fig. 3, we plot the amplitude of the dominant mode of
oscillations (A) and the Hurst exponent (H ) for the time
series of pressure oscillations as a function of Reynolds
number (Re) for the thermoacoustic system (described
earlier as case i)). Note that A is the amplitude of
the dominant peak from the amplitude spectrum of the
fluctuating state variable obtained using the fast Fourier
transform. The signal corresponding to thermoacoustic
instability has H very close to 0, as the signal is per-
fectly periodic. We observe that during the transition,
A increases steeply near the onset of thermoacoustic in-
stability as we vary the control parameter. In contrast,
H gradually decreases towards zero during the transition.
The amplitude of oscillations or the value of A at the on-
set of oscillatory instability depends on the specific system
under consideration. On the other hand, the variation of H
describes the self-organization in turbulent flows into os-
cillatory instabilities, independent of the system features.

We plot the variation of A/AI with H in log-log scale
(fig. 4) for the five different cases mentioned earlier. Here,
we normalize A of each system with the amplitude of

Fig. 3: Amplitude of the dominant mode of oscillations and
the Hurst exponent for unsteady pressure signals as a function
of Reynolds number (Re). We analyze the data from a lab-
oratory bluff body stabilized combustor of length 700 mm for
different Re. The amplitude is obtained from the amplitude
spectrum plotted with a resolution of 4 Hz. The amplitude
increases steeply near the transition to thermoacoustic insta-
bility, whereas the Hurst exponent shows a gradual decrease
during the transition and is approaching zero.

Fig. 4: Inverse power law scaling of amplitude with Hurst ex-
ponent. Variation of amplitude with Hurst exponent is plotted
on a logarithmic scale for the data acquired from different sys-
tems. We observe a power law relation with a constant power
law exponent around −2.

oscillations at the onset of instability (AI) for the given
system. We observe that all the data points collapse to
a single straight line and this reveals an inverse power
law relation between A and H during the intermittency
regime. For all the data irrespective of the frequency of
oscillations or the physics of the system, the experimen-
tally observed value for the power law exponent is found to
remain constant around −2 (−1.83±0.17 for the bluff body
combustor with length 700mm, −2.22± 0.58 for the bluff
body combustor with length 1400 mm, −2.06±0.24 for the
swirl combustor, −2.02± 0.32 for the aeroacoustic system
and −2.21 ± 0.19 for the aeroelastic system). The uncer-
tainties are estimated for 90% confidence intervals. The
points with H > 0.1 are ignored while finding the power
law exponent as they represent the low-amplitude aperi-
odic oscillations far away from the self-organized state.
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Scaling laws and universality are important concepts in
statistical physics. They describe the striking similarity in
the behaviour during critical transitions among systems
that are otherwise different. Scaling in non-equilibrium
phase transitions has been a topic of interest in recent
years [24]. For example, Tham et al. [25] experimentally
obtained a similar power law scaling relationship between
the electrostatic fluctuation levels and the linear growth
rate for self-organization in turbulent plasma leading to a
quasi-coherent state.

Discussions. – Transition to oscillatory instability in
the class of turbulent fluid mechanical systems discussed
here occurs via the state of intermittency and we observe
a universal scaling law during the transition. In fluid dy-
namics literature, intermittency refers to a state in which
a laminar flow is interrupted by high-amplitude turbulent
bursts at apparently random intervals [26]. During the
bursts, the phase space trajectory goes to a larger chaotic
attractor with the original periodic attractor as its sub-
set. Three types of bifurcations are associated with such
intermittencies, namely, cyclic fold, subcritical Hopf, and
subcritical period-doubling bifurcations. Intermittencies
corresponding to these bifurcations are labelled as type I,
II and III, respectively [27,28]1 .

In our case, to begin with, the system is chaotic
and is Lyapunov stable. However, during intermittency,
this stability is lost and the system intermittently ap-
proaches limit cycle oscillations. In contrast to the known
types of intermittencies discussed above, here, the inter-
mittency comprises high-amplitude periodic oscillations
amidst epochs of low-amplitude aperiodic oscillations [30].
The trajectory in the phase space goes to a larger peri-
odic attractor from a smaller chaotic attractor during the
intermittent bursts (fig. 2(b), (e) and (h)). Thus, there
is an inherent difference in the type of intermittency ob-
served during the emergence of oscillatory instabilities in
turbulent flows, as observed for example in thermoacous-
tic, aeroacoustic and aeroelastic systems compared to the
classical ones.

In the present study, we observe the scaling behaviour in
all the systems we have examined, where oscillatory insta-
bilities emerge in turbulent flows. We do not observe this
inverse power law relation in models such as kicked oscil-
lator [31] or noisy Hopf bifurcations [32], even though they
capture the transition from chaos to limit cycle via inter-
mittency. Further, this scaling is not exhibited by models
which capture the transition from chaos to periodic oscil-
lations through type I, II and III intermittencies (shown
in the SM). This experimentally observed scaling appears
to be a universal property for a class of systems in which
order emerges from chaos, as a result of self-organization
in turbulence following an intermittency route.

Fully developed, isotropic turbulence has a well-known
power law scaling for its energy spectrum [1,2], which

1Several other types of intermittencies have been reported and
discussed [29].

shows the distribution of energy across different wave num-
bers. The instances of self-organization in turbulence lead-
ing to oscillatory instability discussed in this paper are
associated with the emergence of periodically shed, large
coherent structures in the flow. This emergence of oscilla-
tory instability is accompanied by the redistribution of en-
ergy across different length scales and thus deviation from
the scaling observed in fully developed turbulent flows. In
the various systems which we examine, as we approach
oscillatory instabilities by changing some control param-
eter of each system, the redistribution of energy into the
most dominant scale (i.e., scale of coherent structure) in
each system is captured by studying the amplitude spec-
tra of an appropriate state variable of the system. In our
study, we used unsteady pressure measurements for ther-
moacoustic and aeroacoustic systems and strain rate for
the aeroelastic system.

Oscillatory instabilities in engineering systems such as
rocket engines, power-producing gas turbine engines, gas
transport pipelines and swaying skyscrapers are undesir-
able and can produce ruinously high-amplitude vibrations
with catastrophic consequences. Using this scaling be-
tween H and A, we predict the amplitude of oscillations
well before the onset of oscillatory instability using the
data points obtained during the stable operation [33].
This a priori estimation of amplitude helps in devising
strategies to mitigate such oscillatory instabilities and
also helps save a lot of money involved in testing the
hardware.

Conclusions. – In the present study, using three differ-
ent systems, we describe a universal route through which
oscillatory instabilities emerge in turbulent flow. The am-
plitude of the dominant mode of oscillations increases
following an inverse power law scaling with the Hurst
exponent of the time series of the appropriate state vari-
able, and the scaling exponent is invariant across the three
systems considered. The proximity to the onset of oscil-
latory instabilities is quantified by the Hurst exponent,
which serves as a system-independent measure of self-
organization. Here, the spectral amplitude of the domi-
nant mode of oscillations serves as the order parameter of
the system.

Power law scaling relations have been discovered for var-
ious critical transitions. Here, we report the experimental
observation of a scaling behaviour (A ∝ H−2 ) for a class
of non-equilibrium systems. The discovery of this unique
scaling enables a priori estimation of the amplitude of
oscillations at the onset of oscillatory instability. This
information on the amplitude can be critical in devising
the countermeasures needed to limit the possible damages
from such oscillatory instabilities.
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