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ABSTRACT
The complex interaction between the turbulent flow, com-

bustion and the acoustic field in gas turbine engines often re-
sults in thermoacoustic instability that produces ruinously high-
amplitude pressure oscillations. These self-sustained periodic
oscillations may result in a sudden failure of engine components
and associated electronics, and increased thermal and vibra-
tional loads. Estimating the amplitude of the limit cycle oscilla-
tions (LCO) that are expected during thermoacoustic instability
helps in devising strategies to mitigate and to limit the possi-
ble damages due to thermoacoustic instability. We propose two
methodologies to estimate the amplitude using only the pressure
measurements acquired during stable operation. First, we use
the universal scaling relation of the amplitude of the dominant
mode of oscillations with the Hurst exponent to predict the am-
plitude of the LCO. We also present a methodology to estimate
the amplitudes of different modes of oscillations separately using
‘spectral measures’ which quantify the sharpening of peaks in
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the amplitude spectrum. The scaling relation enables us to pre-
dict the peak amplitude at thermoacoustic instability, given the
data during the safe operating condition. The accuracy of pre-
diction is tested for both methods, using the data acquired from a
laboratory-scale turbulent combustor. The estimates are in good
agreement with the actual amplitudes.

NOMENCLATURE
TAI Thermoacoustic instability
LCO Limit cycle oscillations
CN Combustion noise
INT Intermittency
p′rms rms of pressure fluctuations
FFT peak Amplitude of the peak in the amplutude spectrum
H Hurst exponent
[µ2µ0] Spectral measure
Re Reynolds number
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INTRODUCTION
Thermoacoustic instability is a severe problem faced by the

propulsion and power industry [1]. Practical combustion appli-
cations such as gas turbine engines and rocket motors often en-
counter thermoacoustic instability. The occurrence of such insta-
bilities has led to annual losses amounting to billions of dollars
for power generation companies [2]. Thermoacoustic instability
(TAI) manifests as high amplitude pressure oscillations that arise
due to the establishment of a positive feedback mechanism be-
tween the acoustic field and the unsteady heat release rate. In
a confined combustion system, this interaction between the sub-
systems, under appropriate conditions, can have catastrophic ef-
fects. The spontaneous emergence of such oscillations induces
increased thermal and mechanical loading to the combustor, forc-
ing a shut down of gas turbines or structural damage and reduc-
ing the life span of the combustor [2]; in rockets, it leads to even
mission failures. Thus, there has been an increasing demand for
methodologies to mitigate TAI.

One solution to mitigate TAI involves implementing control
strategies to suppress these oscillations. In general, passive con-
trol strategies are preferred. The control mechanisms generally
involve modifications of the combustor geometry, fuel injector
geometry or microjet injection [3]. These strategies are imple-
mented based on ad hoc modifications, investing a lot of money
and time.

Alternately, there has been work on development of precur-
sors to predict the proximity to TAI, methods to estimate the
amplitude of TAI using the data acquired during stable opera-
tion, and implementing control strategies to suppress these os-
cillations. It would be desirable to perform the detection and
control before the system reaches TAI rather than looking at the
amplitude or root mean square (rms) of the fluctuations. There
have been successful attempts to predict the onset of TAI. The
stability margin was determined using several methods such as
autocorrelation of the acquired pressure signal [4], exhaust flow
and fuel injection rate modulation [5], etc.

Recently, researchers have developed techniques to deter-
mine stability boundaries based on only acoustic pressure mea-
surements. During stable operation, acoustic pressure oscilla-
tions are chaotic [6, 7], and the loss of chaotic nature is quanti-
fied to obtain precursors [6]. Furthermore, Nair et al. [8] used
the Hurst exponent to characterize the fractal nature of data dur-
ing the transition to TAI. They showed that the variation of the
Hurst exponent captures this transition well-before traditional
measures. As another approach, recurrence quantification anal-
ysis has been used to provide precursors to TAI, by identifying
the recurrences in the phase space reconstructed from the time
series of acoustic pressure [9, 10]. The measures derived from
complex networks are also used to provide precursors for such
transitions [11,12]. There are many other methods to obtain early
warning signals; these include the use of synchronization index,
modified permutation entropy [13], etc. A few studies are avail-

able on precursors to TAI based on artificial intelligence (AI),
and a combination of AI with physics-based precursors [14–16].

Being able to determine the amplitude during TAI helps to
design appropriate control strategies. If the estimated amplitude
is low enough that the combustor can handle it, then the combus-
tor can be operated safely during TAI as well. However, if the
amplitude is deemed dangerous for the combustor, either we can
evade TAI or appropriate countermeasures such as increasing the
flame length by using alternate fuel paths can be made.

Several studies have been conducted in the past to estimate
the amplitude of limit cycle oscillations (LCO) during thermoa-
coustic instability. Traditionally, the amplitude is estimated uti-
lizing flame describing functions (FDF) [17,18]. FDF character-
izes the linear or nonlinear response of flame to external pertur-
bations of different amplitudes and frequencies. For better pre-
dictions, Krediet et al. [19] considered acoustic boundary losses
along with the FDF, and the accuracy of the predictions could
depend upon both the FDF and the acoustic losses [19].

Even though predicting the amplitude using FDF has been
reported to be successful in many cases, forcing the system at
high amplitudes to obtain FDF is costly and difficult for indus-
trial engines. It is hard to design actuators to produce high ampli-
tude oscillations, and exciting such high amplitudes in high pres-
sure gas turbine combustors is not advisable. Recently, Seshadri
et al. [20] proposed a methodology for predicting the amplitude
based on intermittency statistics where TAI is associated with
vortex shedding. They considered the acoustic field as a kicked
oscillator and the impingement of a vortex carrying unburned re-
actant mixture results in a burst of heat release which, in turn,
adds energy to the acoustic field. Then, an equation is derived
for the slow-varying amplitude of oscillations from the reduced-
order model for a combustion system with vortex shedding. They
were able to predict the amplitude of LCO successfully for bluff
body and swirl stabilized combustors.

Traditionally, thermoacoustic instability in combustion sys-
tems was considered as a transition from a stable fixed point to
periodic oscillations as the control parameter is varied. Recently,
Nair et al. [21] reported that the state of intermittency presages
the transition to limit cycle oscillations in turbulent fluid me-
chanical systems. While studying the transition to TAI, the ef-
fects of turbulence are often considered as background noise and
are neglected in the traditional approach. However, these irreg-
ular fluctuations are not just noise; in contrast, they are deter-
ministic [7] and arise out of the turbulent dynamics. We treat
these fluctuations with their inherent complexities as opposed to
considering them as noise and quantify the fractal characteris-
tics of the acoustic pressure fluctuations using a measure known
as Hurst exponent (H). H describes how the rms of the stan-
dard deviation of fluctuations scales with the time over which it
is calculated. While the amplitude of pressure fluctuations in-
creases steeply near the onset of the TAI, H decreases smoothly
and relatively much earlier than the rise in amplitude. The am-
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FIGURE 1. Schematic of the experimental set up for the turbulent
combustor. The setup consists of a settling chamber, a burner, a flame
holding mechanism and a combustion chamber with a variable duct
length. We use two different flame holding mechanisms, a bluff body
(shown in b) and a swirler (shown in c), attached to the burner by a
central shaft. All dimensions are given in mm.

plitude of the dominant mode of oscillations follows an inverse
square law scaling with the Hurst exponent [22]. In the current
study, we use this concept to predict the amplitude of the LCO
during TAI. Irrespective of the frequency of oscillations or the
underlying physics of the problem, the data acquired from var-
ious configurations of thermoacoustic, aeroacoustic and aeroe-
lastic systems obey this inverse square law. Hence, we estimate
the amplitude of LCO by extrapolating the universal power law
relation towards TAI (i.e., H tending to zero).

We also present a methodology to estimate the amplitudes
of different modes of oscillations separately using ‘spectral mea-
sures’ which quantify the sharpening of peaks in the power spec-
trum. The spectral measures are calculated as the product of
different moments of the normalized power spectrum raised to
integer powers, and they follow inverse power law relations with
the corresponding peak power [23]. Once we have the time se-
ries of acoustic pressure oscillations during the stable operation,
we can generate the power spectrum and identify all the possible
modes that are expected to grow. The scaling relation enables us
to predict the amplitude during TAI, given the value of spectral
measures and the amplitude at the safe operating condition. The
objective of this study is to present the application of the patent-
pending methodologies [24, 25] for predicting the amplitude of
TAI.

In the rest of the paper, we first describe the experiments
in the next section. Subsequently, we discuss the results which
include characterizing the transition to TAI using the two meth-
ods and the interpretation of the inverse power laws. Then, we
detail the procedure of estimation of amplitude and illustrate its
efficacy using some examples.

EXPERIMENTS
The setup consists of a settling chamber, combustion cham-

ber with flame holding mechanisms, ignition spark plug and a
decoupler. Air enters through the inlet, and the fuel is injected
through the central shaft holding the bluff body or swirler. The
reactant mixture gets ignited using the ignition spark plug just
before the combustion chamber. The length of the combustion
chamber can be varied; in this study, we use lengths of 700 mm,
1100 mm and 1400 mm. We perform experiments with both
bluff-body stabilized combustor and a swirl stabilized combus-
tor. Liquified petroleum gas (LPG: butane 60 % and propane 40
% composition by mass) is the fuel used. Air is partially pre-
mixed with LPG for the experiments. We increase the Reynolds
number (Re) by increasing the mass flow rate of air, and keep-
ing the mass flow rate of fuel constant. The mass flow rates
are controlled using mass flow controllers (Alicat MCR series)
with an uncertainty of 0.8% of reading + 0.2% of full scale. The
Reynolds number is calculated as Re = 4ṁD1/πµD2

0, where ṁ
is the mass flow rate of air-fuel mixture, µ is the dynamic vis-
cosity of the mixture, D0 is the diameter of the burner and D1 is
the diameter of the bluff-body (D1 = D0 for swirler). The un-
certainty in Re is calculated considering the uncertainty in the
flow rates of air and fuel. More details of experiments including
all the dimensions can be found in Nair & Sujith [8] and Nair et
al. [21]. We use a piezoelectric transducer, PCB106B50, (sen-
sitivity = 72.5 mV/kPa, resolution = 0.48 Pa and 0.64 % uncer-
tainty) to measure the pressure fluctuations inside the combustion
chamber. The sensor is mounted at the anti-node location of the
acoustic oscillations to record the peak amplitude of the standing
wave. The data is acquired at a sampling rate of 10 kHz.

RESULTS AND DISCUSSIONS
Transition from combustion noise to TAI

We focus on the transition from the state of combustion
noise (CN) to TAI following an intermittency (INT) route in tur-
bulent thermoacoustic systems. We vary the Reynolds number
(Re) as the control parameter to study this transition. The time
series of acoustic pressure fluctuations acquired at different val-
ues of Re during the transition are analyzed. Figure 2 shows three
such time series and the corresponding amplitude spectra for the
states of CN, INT and TAI. The time series during CN comprises
low amplitude aperiodic oscillations which have deterministic
chaotic characteristics [7]. Furthermore, these oscillations are
multifractal [8] due to the presence of the underlying turbulent
flow. As we approach TAI, we start to observe bursts of peri-
odic oscillations in the data. A state of intermittency which con-
sists of epochs of high amplitude periodic oscillations amidst low
amplitude chaotic oscillations is present during the transition to
TAI. The periodic content increases and becomes self-sustained
limit cycle oscillations (LCO) during the state of full-blown in-
stability. Along with this, the dominant peak in the amplitude
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FIGURE 2. Time series and the corresponding amplitude spectrum
of acoustic pressure fluctuations during the transition from CN to TAI.
The data obtained for the bluff body stabilized combustor is presented
here as a representative case; we observe a similar transition in swirl
stabilized combustor as well. (a) The time series representing the state
of CN (Re = (1.9± 0.053)× 104) consists of low amplitude aperiodic
oscillations. (b) The amplitude spectrum shows a broad peak around
f = 250 Hz. (c) We observe a state of INT at Re = (2.6± 0.069)×
104. The time series during INT has bursts of high amplitude periodic
oscillations amidst epochs of low amplitude aperiodic oscillations. This
reflects as an increase in the amplitude of the peak in the amplitude
spectrum (d). Then, the amplitude of pressure fluctuations increases
abruptly during TAI. (e) The time series during TAI (at Re = (2.8±
0.073)× 104) comprises high amplitude periodic oscillations and the
resultant amplitude spectrum (f) has a sharp peak around f = 250 Hz.

spectrum changes from a broad peak to a sharp one.
Figure 3 shows the variation of p′rms and the amplitude of

dominant mode (FFT peak) as a function of Re. For relatively
lower Re, both p′rms and FFT peak are very low due to the pres-
ence of low amplitude aperiodic fluctuations during CN. We note
that p′rms is slightly greater than the FFT peak during CN, as
the time series is aperiodic to a great extent and the energy is
distributed over a wide range of frequencies. The FFT peak ac-
counts for only the amplitude of the dominant mode. Hence, dur-
ing TAI, we observe that the FFT peak becomes higher than p′rms

FIGURE 3. The variation of p′rms and the FFT peak during the tran-
sition from CN to TAI. The amplitude of dominant mode of oscillations
computed from the amplitude spectrum using the Fourier transform is
referred to as the FFT peak. Both p′rms and FFT peak are very low dur-
ing CN. The amplitude of oscillations increases as we approach TAI,
which is captured by both p′rms and FFT peak. This figure uses data
acquired from a bluff body stabilized turbulent combustor.

by a factor of
√

2 as expected for a sinusoidal signal because all
the energy is being transferred to a single frequency. Also, the
oscillations grow to a very high amplitude during TAI. We use
Hann windowing while performing fast Fourier transform (FFT).
The method of windowing helps to get a consistent estimation of
the peak amplitude. We can minimize issues of spectral leakage
by applying windowing. In this case, we use a Hann window for
0.25 s long data segments, thereby fixing a resolution of 4 Hz for
the FFT. We find the FFT peak as the average of peak amplitudes
of these 0.25 s windows for the full 3 s data.

Fractal characteristics and universal scaling
To quantify the fractal characteristics of acoustic pressure

fluctuations during the transition to TAI, we use the Hurst expo-
nent (H). For a time series, H is related to the fractal dimension
(D) as H = 2−D. We calculate H following the procedure of
Multifractal Detrended Fluctuation Analysis (MFDFA) [26]. In
MFDFA, we first subtract the mean (x̄) from the time series of
length N, and calculate the cumulative deviate series Y (k) as,
Y (k) = ∑

k
t=1[xt − x̄], where k = 1,2, ...,N. Then, the deviate se-

ries Y (k) is divided into non-overlapping segments of size w, and
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FIGURE 4. Variation of H as a function of Re for the acoustic pres-
sure data from the bluff body stabilized combustor. H approaches a
limiting value of zero for LCO, unlike amplitude which is unbounded
and can increase to any level depending on the system.

the number of such segments, Nw is the greatest integer of N/w.
To obtain the fluctuations, we subtract the polynomial fit from
the deviate series (Yi) for each segment i. The structure function
of order 2 is defined as follows:

F2(w) =

[
1

Nw

Nw

∑
i=1

[
1
w

w

∑
t=1

(Yi(t)− Ȳi)
2

]]1/2

. (1)

We calculate the structure function for different time scales w.
The slope of the linear regime of the plot of variation of F2 with
the span w in a double logarithmic scale is known as the Hurst
exponent (H).

H takes values between 0 and 1 for time series, correspond-
ing to fractal dimension between 1 and 2. H > 0.5 indicates that
the time series is a persistent one, i.e., an increase (decrease) in
the value of time series is likely to be followed by an increase
(decrease) in its value. In contrast, an antipersistent signal would
have H < 0.5, which is characterized by a decrease (increase) in
the value is most likely to be followed by an increase (decrease)
in its value and vice versa. An uncorrelated random process has
H = 0.5. Unlike mathematical fractal objects, real fractal time
series (experimental data) possess fractal nature only for a cer-
tain range of time scales. Hence, we need to select a range of
scales that is optimal to capture the fractal characteristics during
the transition. Here, we choose two to four acoustic cycles of
oscillations of the natural frequency of the system [8, 27]. If we
select scales with a length corresponding to less than one cycle of
oscillation, then the periodicity in the data may not be captured.
Also, the fluctuations are averaged out for long segments with a
large number of cycles.

The aperiodic fluctuations observed during the state of CN
has H > 0.2 (Fig. 4). As the periodic content in the signal in-
creases during the transition, the fractal nature is lost. H captures
this changing fractal characteristics, exhibiting a monotonic de-

FIGURE 5. The inverse square law relation between H and FFT peak
during the transition to TAI in turbulent systems. We present the scal-
ing for the data acquired from the bluff body stabilized combustor with
different lengths and a swirl stabilized combustor. As different config-
urations of the thermoacoustic system can have different amplitudes of
LCO, we normalize the peak amplitude with the amplitude of LCO for
that particular case. The normalization is done only for visualization
purpose. A dashed red line is drawn to show the inverse power law.

crease in value tending towards zero. Moreover, the value of H
is bounded. H decreases smoothly during the transition, while
the FFT peak increases steeply near the onset of the TAI. The
amplitude of the dominant mode of oscillations scales with the
Hurst exponent following an inverse power law, A0 ∝ H−2.0±0.2

(Fig. 5). We observe this scaling relation during the emergence
of oscillatory instabilities from turbulence, in different configu-
rations of thermoacoustic systems, aeroacoustic and aeroelastic
systems [22]. The average power law exponent is -2±0.2 across
these systems. We disregard the states with H > 0.15 as the tail
of the power law; we observe the scaling approximately from
H < 0.15. The tail of the power law consists of the states which
are far from TAI.

Spectral measures to estimate the amplitude of indi-
vidual modes of oscillations

The emergence of self-sustained periodic oscillations from
an initially disordered state in various systems is accompanied by
the phenomenon of spectral condensation, which is the narrow-
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FIGURE 6. A representative spectral measure [µ2µ0] as a function
of Re in a semi logarithmic scale. The variation has a fluctuating trend
during CN. However, the value of [µ2µ0] decreases monotonically as
we approach TAI.

ing of the peak in the amplitude spectrum accompanied by the
growth of amplitude of the dominant oscillatory mode [23]. To
quantify spectral condensation, Pavithran et al. [23] used spectral
measures which are defined as the products of different moments
of the power spectrum. They showed that the peaks in the power
spectrum follow a power law scaling with these spectral mea-
sures.

In the present study, we aim to predict the amplitude of TAI
using the scaling relation exhibited by the spectral measures.
Therefore, we use the amplitude spectrum instead of the power
spectrum, akin to the manner in which Pavithran et al. [23] used
power spectrum to obtain a universal scaling relation. The spec-
tral measures are denoted as [µmµn], where µm is the mth moment
of the amplitude spectrum, and m & n are integers. Here, we use
a representative spectral measure [µ2µ0] (the product of 2nd and
0th moments) defined as,

[µ2 µ0] =

[∫ +δF

−δF

A(F)

A0

∣∣∣∣ F
f0

∣∣∣∣2 dF

]
×
[∫ +δF

−δF

A(F)

A0
dF
]
, (2)

where, A(F) is the amplitude corresponding to the modified fre-
quency F = f − f0. Here, f is the variable indicating the fre-
quency of oscillations, f0 is the central frequency corresponding
to the peak in the spectrum, and A0 is the maximum amplitude
at the center of the peak (A( f0)). We calculate the spectral mea-
sure for the peak at f0 in the neighbourhood of width δF (we use
δF ∼ f0/5).

During the transition to TAI, the broad peak in the ampli-
tude spectrum observed during CN sharpens to a narrow peak,
while the amplitude grows. According to Eq. 2, the spectral mea-
sure [µ2µ0] decreases as the peak becomes sharper. We present
the variation of [µ2µ0] in Fig. 6. During CN, the spectral mea-
sure does not decrease much and fluctuates near a constant value.
Then, it starts to drop to a lower value as we approach TAI. We

FIGURE 7. The inverse power law scaling between FFT peak and
[µ2µ0]. The data acquired from the bluff body combustor with different
lengths and the swirl combustor obey the power law relation with the
same exponent. The FFT peak from the amplitude spectrum is normal-
ized to show all these power laws in the same plot (for the sake of visu-
alization). The normalization factor is the estimated value of FFT peak
for [µ2µ0] = 1 obtained by extrapolating power law for each system.
The average value of the power law exponent across different systems
including thermoacoustic, aeroacoustic and aeroelastic systems is found
be around -0.66±0.1.

calculate the spectral measure for all the possible modes that are
expected to grow. Thereby, we can track the growth of individual
modes of oscillations. The spectral measure follows an inverse
power law relation with the corresponding peak amplitude as,
A0 ∝ [µ2µ0]

−0.66±0.1. We use this concept of universal scaling
of the peak amplitude and spectral measure to estimate the am-
plitude of individual modes of oscillations. Note that the power
law exponent obtained using the spectral measures defined on
the amplitude spectrum with the Hann window is different from
the power law exponent for spectral measures from the power
spectrum [23].

Procedure to estimate the amplitude of limit cycle os-
cillations

These universal scaling relations during the transition to os-
cillatory instability are observed not just in thermoacoustic sys-
tems, but also in other fluid mechanical systems such as aeroa-
coustic and aeroelastic systems. Commonality among transitions
in all these systems is that they exhibit emergence of ordered be-
havior from a background turbulent flow field following an inter-

6 Copyright © 2021 by ASME



FIGURE 8. Estimating the amplitude of limit cycle oscillations using (a) the scaling of FFT peak and H and (b) the scaling of FFT peak and the
spectral measure [µ2µ0]. We use a few data points during the state of stable operation (shown as black colour points) and extrapolate the power law
behaviour towards TAI, that is towards higher FFT peak. The CN data shown here is obtained from the bluff body stabilized combustor of length 700
mm. The amplitudes in the region between A and B are the estimated amplitude during TAI.

mittency route. However, the underlying physical mechanisms
involved in these systems are indeed different, suggesting that
this scaling is characteristic of the underlying bifurcation in the
system and is not determined by the specific physical processes
that govern the system. The current manuscript aims to illustrate
the method of amplitude estimation of the limit cycle oscillations
using these scaling relations.

We describe the procedure of estimation of the amplitude
of TAI using a few input data during stable operation. We plot
the power law relations, A0 ∝ H−2.0±0.2 and A0 ∝ [µ2µ0]

−0.66±0.1

passing through the points corresponding to the input data ac-
quired during stable operation. We extrapolate the power laws
towards TAI to find the y-intercept (refer Fig. 8). According to
the definition of H and [µ2µ0], we know that both reduce towards
zero as we approach TAI. However, H and [µ2µ0] will never at-
tain the value of zero because of the discrete representation of the
analog signal. We need the limiting values for H and [µ2µ0] to
estimate the amplitude of LCO. The theoretical value for H is 0
for a pure sine signal; however, for a limit cycle data acquired for
a finite time duration, the lowest possible value would be around
0.02 (marked A in Fig. 8a). To fix the lowest limit for [µ2µ0],
we construct a unit amplitude sine wave with the same frequency
as the natural frequency of the system and with the same sam-
pling frequency as that of the experimental data. The value of
[µ2µ0] for this sine wave is the lower limit A (marked in Fig.
8b). The theoretical value of [µ2µ0] for a sine wave according to
Eq. 2 is 0. This would happen only if the amplitude spectrum is
a Dirac delta function which has a nonzero amplitude only at f0.
However, the finite time interval for which the data is acquired
attributes a nonzero width in the amplitude spectrum at f0. This
interplay between the localization in the time and frequency do-
main is in accordance with Heisenberg’s uncertainty principle.

In addition to this, we use a Hann window of 0.25 s length and
the corresponding amplitude spectrum has a reduced resolution
of 4 Hz. All these impose a nonzero limit on the value of the
[µ2µ0] for a sine wave.

The estimated amplitude for this limit A corresponds to the
maximally “clean” periodic dynamics possible during TAI. For
systems that exhibit a smooth transition to TAI via intermittency,
this estimate will always be higher than the amplitudes that are
practically attainable. A pure sine wave will not be achieved
in turbulent systems. The estimated maximum amplitude (limit
A) can be considered for designing the combustor. Now, we
proceed to set an upper limit B for the threshold values of H
and [µ2µ0]. Here, we construct a sine wave with amplitude
modulations using the information from the time series of com-
bustion noise. The periodic oscillations during TAI appear to
have inter-cycle variability in amplitude, as shown in Fig. 2 (e).
Lieuwen [28, 29] discussed the role of noise and system nonlin-
earities upon the temporal features of the limit-cycle pressure os-
cillations. Therefore, the limit B corresponds to a sine wave with
a noisy amplitude envelope as observed during TAI in practical
cases. We extract the envelope (E) of the acoustic pressure fluc-
tuations acquired during CN using Hilbert transform [30]. Then,
we construct a unit amplitude sine wave and modify its enve-
lope with the extracted amplitude from the experimental data as
x(t) = (1+Enormalized)sin ωt. The amplitude envelope is normal-
ized (Enormalized = (E–mean(E))/max(E)), as we consider only
its temporal characteristics.

Further, we can continuously improve the prediction by nar-
rowing the range of estimated amplitudes between A & B, as
we have more data points during the transition to TAI. When we
estimate the amplitude using the data acquired during INT, the
envelope of the signal is less noisy compared to that of CN and
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FIGURE 9. Time series showing aperiodic oscillations during stable
operation at Re = 1.95× 104 and the time series with high amplitude
limit cycle oscillations during TAI (Re = 2.78× 104). The predicted
amplitude (using H), indicated with the red line, reasonably captures
the actual limit cycle amplitude. The data presented is for the case of
the bluff body stabilized combustor.

resembles experimental data more. As a result, the values of H
and [µ2µ0] corresponding to limit B reduce. Using the envelope
of INT shifts limit B towards A. Hence, we can narrow the range
of estimated amplitudes, as we have more data during intermit-
tency. The shaded region in Fig. 8 corresponds to the predicted
region of TAI. A more elaborate explanation on the method of
selecting the limits A & B is given in Appendix A.

Illustration of efficacy of the estimation procedure
We need to test how well the estimation works when applied

to experimental data obtained from practical thermoacoustic sys-
tems. We use pressure time series obtained from a bluff body and
a swirl stabilized combustors having lengths 700 mm to illustrate
the efficacy of the devised estimation technique. First, we take
only one time series during CN and try to predict the amplitude
of TAI. In Fig. 3, there are two data points in the region of TAI. In
order to compare the predicted amplitude with the actual value,
we find the H and [µ2µ0] of the data corresponding to TAI, which
are available from the experiments. Then, using the power law
expression, we predict the amplitude corresponding to that par-
ticular values of H and [µ2µ0], and we calculate the deviation of
this predicted values from the actual amplitudes.

Subsequently, we try to predict using a higher number of
time series data during the CN and INT. Such estimates are in
good agreement with the actual values (Fig. 9). The predicted
amplitudes and the error in prediction, using H and [µ2µ0] are
listed in Table 1 & 2. Each row in the table shows the results ob-
tained using all the data in the preceding rows together. The ac-
tual amplitudes of LCO for bluff body and swirl stabilized com-
bustors are 1737 Pa and 1509 Pa, respectively. For the bluff body
case, the estimate obtained using three input time series is 1922
Pa and 1865 Pa using H and [µ2µ0], respectively. Note that, these
values are within 12% and 7% of the actual amplitude. The esti-

TABLE 1. Estimated amplitude of limit-cycle oscillations using the
scaling relation of H and FFT peak from the time series acquired during
the stable operation. The first row in the table shows the results from
only one time series. The second row shows the results using the first
and the second time series, and so on.

Re FFT Peak H Apredicted ∆A,%

1) Bluff body (Actual limit cycle amplitude = 1737 Pa)

2.12 ×104 75.32 0.142 1864 9

2.16×104 82.22 0.132 1807 6

2.20×104 95.97 0.135 1922 12

2) Swirl (Actual limit cycle amplitude = 1509 Pa)

1.35×104 139.64 0.129 1658 10

1.41×104 567.29 0.057 1325 -12

1.46×104 1119.97 0.043 1440 -5

TABLE 2. Estimated amplitude of limit-cycle oscillations using the
scaling relation of spectral measure and FFT peak from the time series
acquired during the stable operation.

Re FFT Peak [µ2µ0] Apredicted ∆A,%

1) Bluff body (Actual limit cycle amplitude = 1737 Pa)

2.00 ×104 90.84 1.23 1506 -13

2.04×104 77.23 3.39 1712 -2

2.08×104 82.32 3.12 1865 7

2) Swirl (Actual limit cycle amplitude = 1509 Pa)

1.35 ×104 139.64 0.37 1007 -33

1.41 ×104 567.29 0.05 1052 -30

1.46 ×104 1119.97 0.02 1212 -20

mates using H and [µ2µ0] for the swirl stabilized combustor have
-5% and -20% deviation from the actual value. The accuracy of
estimation using a single input time series depends on how well
that particular data point fits to the power law scaling. There-
fore, we can get significantly low errors in the estimate by using
multiple input time series acquired during the transition. An in-
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put time series, and the LCO along with the predicted amplitude
(indicated with a red line) are shown in Fig. 9. The predicted
value is indeed close to the actual amplitude of LCO. Note that
the methods discussed in this paper are valid for highly turbulent
systems which exhibit a steep, albeit smooth transition to TAI via
INT. However, it is not clear whether such an approach will work
if there is an abrupt jump in the amplitude at the onset of TAI.
Further work needs to be done to estimate the amplitude of TAI
under such conditions.

FIGURE 10. (a) low amplitude aperiodic p′ during CN and (b) the
corresponding amplitude spectrum with two broad peaks around 160
Hz and 500 Hz. (c-d) Both the modes grow as we reach TAI, and the
peak at ∼158 Hz becomes dominant. The predicted amplitudes of these
two modes are marked with red circles in the spectrum.

Estimating the amplitude of multiple modes of oscillations:
We extend the method to predict the amplitude of individual
modes of oscillations in thermoacoustics systems, exhibiting
multiple modes of oscillations. The experimental setup shown
in Fig. 1 is observed to have thermoacoustics instability with a
single frequency. However, the combustor with a preheater ar-
rangement (to preheat the reactants) is found to excite different
frequencies at different temperatures. Refer Pawar et al. [31] for
more details of the experiments with preheater setup. We use the
pressure data acquired at a preheat temperature of 3000C. Fig-
ure 10 shows the time series and the amplitude spectra during
CN and TAI. At this temperature, the peak at 158 Hz and 456 Hz
become sharper during TAI. The dominant mode during TAI is
158 Hz (amplitude increases from ∼100 Pa to ∼1734 Pa). Also,
the amplitude of the peak at 456 Hz increases from ∼80 Pa to
∼418 Pa, during the transition.

We calculate the [µ2µ0] in the neighbourhood of both the
peaks ( f1 = 158 Hz and f2 = 456 Hz) and estimate the amplitude
using the scaling relation A ∝ [µ2µ0]

−0.66. The estimated peak
amplitude values using 3 pressure time series data during CN is

TABLE 3. Estimation results for data with multiple modes

Re FFT peak [µ2µ0] Apredicted ∆A,%

1) First mode, f1 = 158 Hz (Actual amplitude = 1734 Pa)

1.81 ×104 146.45 3.68 1236 -29

1.83×104 139.71 4.11 1250 -27

1.84×104 113.43 5.84 1261 -27

2) Third mode, f2 = 456 Hz (Actual amplitude = 418 Pa)

1.81 ×104 88.06 0.36 390 -6

1.83 ×104 105.80 0.26 381 -9

1.84 ×104 96.78 0.41 403 -4

marked with red colour circles in Fig. 10b. Further, the estimated
values using a single time series and multiple time series data are
listed in Table 3. When we compare the predicted and the actual
values, the estimates for the first and second peak are within 30%
and 10% error, respectively. Thus, the methodology using spec-
tral measure can be applied to predict the amplitude of individual
modes during TAI.

For the data from the combustor with preheater (with multi-
ple modes), there is a significant error in the estimated amplitude
calculated using the scaling of H. The possible reasons for this
inaccuracy could be the low levels of turbulence present in the
system and the presence of multiple peaks in the amplitude spec-
trum. Unlike the scaling of [µ2µ0], the scaling with H is observed
only in turbulent fluid mechanical systems. Further, the presence
of peaks other than the dominant modes in the amplitude spec-
trum can effect the value of H since it is calculated over a certain
range of time scales. Nevertheless, the variation of H during the
transition provides indication of the impending TAI well in ad-
vance, and H can be used as a precursor. Further studies need to
be done to identify the exact reason for the inaccuracy in ampli-
tude estimation.

In this study, we showed the method of amplitude predic-
tion for longitudinal modes. However, many practical combus-
tors seldom show a single dominant frequency and often exhibit
multiple frequencies. Further, the mode of instabilities can also
be transverse (or azimuthal) or a combination of transverse and
longitudinal modes. In the future, a detailed study for the per-
formance of Hurst exponent and spectral measure towards early
warning and amplitude estimation for such modes needs to be
done. Further, multiple experiments in different configurations
of the experimental setup with changes in different control pa-
rameters to approach thermoacoustic instability need to be con-
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ducted to establish more accurate error bars for the power law
exponent. In the future studies, we aim to derive a theoretical
framework for studying spectral condensation.

CONCLUSIONS
In this study, we present two different methods to predict the

amplitude during thermoacoustic instability, by using time series
data during the state of stable operation or intermittency. First,
we show that the universal scaling relation between the ampli-
tude of the dominant mode and the Hurst exponent in the inter-
mittency regime can be exploited to predict the amplitude during
TAI. We demonstrate that this method can predict the amplitude
fairly accurately in practical systems, by applying this procedure
to the data from a bluff body and a swirl stabilized combustor.
However, in the case of a combustor with a preheater that ex-
hibits multiple modes of oscillations, there is a significant error
in the predicted amplitude. We speculate that this inaccuracy is
due to the low levels of turbulence present and due to the pres-
ence of multiple peaks in the amplitude spectrum. Further studies
need to be done to pinpoint the exact reason for this inaccuracy.

Along with this, we also show that the amplitude during TAI
can be predicted by using the scaling relation between the ampli-
tude of the dominant mode and the spectral measure. For this
method as well, we show that the predictions are fairly accurate
for the bluff body and swirl combustor. Interestingly, using this
method, we are able to predict the amplitude of different modes
of oscillations in the case of the combustor with a preheater. To
improve the predictions, we need to perform more experiments
with combustors exhibiting multiple frequencies.

Both these methods can be used by manufacturers of in-
dustrial gas turbines to estimate the amplitude during TAI, even
without approaching anywhere close to instability. In other
words, the amplitude can be estimated without exposing the com-
bustor to large amplitudes and thereby endangering it. In the fu-
ture, we would most probably see artificial intelligence based
methods or a combination of AI with physics-based methods
such as that presented here to predict the amplitude during TAI.
AI based models are heavily used for the purpose of forecast-
ing, especially for financial and weather data, currently. Such
methods, when applied to thermoacoustics, in combination with
physics based approaches such as that presented here, would
hopefully give us more powerful tools to predict the amplitude
during thermoacoustic instability.
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Appendix A: Selecting the limits A and B
By definition, both H and the spectral measure [µ2µ0] reduce

towards zero as we approach TAI. However, H and [µ2µ0] will
never attain the value of zero because of the discrete representa-
tion of the analog signal. To estimate the lower limit of H and
[µ2µ0] in practical scenarios, we construct a unit amplitude si-
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FIGURE 11. (a) A typical time series representing pressure fluctu-
ations acquired from experiments during TAI and (b) a synthetic sine
wave signal. The zoomed view shows the periodic nature of the signal.

nusoidal signal with the same frequency as the natural frequency
of the system and with the same sampling frequency as that of
the experimental data. Such a constant amplitude sine wave is
representative of the maximally “clean” periodic dynamics pos-
sible during thermoacoustic instability. The H and spectral mea-
sure for this sinusoidal signal are considered as limit A in Fig. 8.
Thus, the estimated amplitude corresponding to limit A is the
maximum possible amplitude for a given system configuration.

Figure 11(a)-(b) shows the time series of pressure fluctua-
tions acquired from the experiments during TAI and a synthetic
sine wave signal with the same frequency, respectively. In con-
trast to the regularity in a clean sinusoidal signal, experimental
data of pressure fluctuations during TAI have inter-cycle variabil-
ity in the amplitude. The values of H and [µ2µ0] for a clean sine
wave will be close to zero, and the estimated amplitude will be
higher than practically attainable amplitudes in highly turbulent
systems exhibiting smooth transition via intermittency.

To avoid such an over-estimation of amplitude using limit
A, we construct a sine wave with amplitude modulations to de-
fine limit B. We do not add any noise to get the envelope fluc-
tuations; rather we use characteristics of time series data during
stable operation. We extract the envelope (E) of the pressure
fluctuations during CN using the Hilbert transform. Then, we
construct a unit amplitude sine wave (sin ωt) and multiply it
with (1+Enormalized) as follows, x(t) = (1+Enormalized)sin ωt.
Here, Enormalized = (E–mean(E))/max(E).

Figure 12(a) shows three representative time series (I, II &
III) acquired from the experiments (before the onset of TAI). The
extracted envelope (E) is shown with a violet color. These en-
velopes are normalized as mentioned before and used to mod-
ify the sine waves. The time series in each row I, II, & III of
Fig. 12(b) corresponds to the sine waves multiplied with the ex-
tracted envelopes from Fig. 12(a). The zoomed plot (Fig. 12(c))
shows that the signal is sinusoidal with amplitude modulations.

In Fig. 12(a), the time series I & II represents CN, and III
corresponds to INT. From Fig. 12(b)I-III, we observe that the
signal’s envelope becomes less noisy (see the black curves indi-

FIGURE 12. (a) Time series showing acoustic pressure signals dur-
ing the states of stable operation. Three representative signals I, II &
III are shown along with the extracted amplitude envelope. (b) Am-
plitude modulated sinusoidal signals with the envelope of experimental
data shown in (a). The time series I - III are acquired during the transi-
tion towards TAI; I & II represent CN, and III corresponds to INT. From
I - III (b), we observe that the envelope of the signal becomes less noisy.
The zoomed plot (c) shows that the signal is sinusoidal with slight am-
plitude variations. The limit B evaluated for H and [µ2µ0] for the signals
in (b) are shown in (d).

cating the envelopes of the sine waves). The signal in III b resem-
bles the experimental data more than I b. The values of H and
[µ2µ0] for the sine waves with the envelope extracted from the
three representative time series I, II & III are shown in Fig. 12(d).
As expected, the values of H and [µ2µ0] for the sine wave with
the envelope of INT (Fig. 12(b)-III) are slightly lower than that of
the case with combustion noise. Using the signal with the lower
H and [µ2µ0] shifts the limit B towards limit A (i.e., the differ-
ence between the two limits is reduced). Hence, we can narrow
the range of estimated amplitudes (between A and B) by using
the data for intermittency instead of combustion noise to extract
the amplitude envelope.
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