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Spatial networks have recently attracted great interest in various fields of research. While the
traditional network-theoretic viewpoint is commonly restricted to their topological characteristics
(often disregarding the existing spatial constraints), this work takes a geometric perspective, which
considers vertices and edges as objects in a metric space and quantifies the corresponding spatial
distribution and alignment. For this purpose, we introduce the concept of edge anisotropy and
define a class of measures characterizing the spatial directedness of connections. Specifically, we
demonstrate that the local anisotropy of edges incident to a given vertex provides useful informa-
tion about the local geometry of geophysical flows based on networks constructed from spatio-
temporal data, which is complementary to topological characteristics of the same flow networks.
Taken both structural and geometric viewpoints together can thus assist the identification of under-
lying flow structures from observations of scalar variables. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4971785]

Complex networks have recently attracted a rising interest
for studying dynamical patterns in geophysical flows such
as in the atmosphere and ocean. For this purpose, two dis-
tinct approaches have been proposed based on either (i)
correlations between values of a certain variable mea-
sured at different parts of the flow domain (correlation-
based flow networks) or (ii) transition probabilities of
passively advected tracers between different parts of the
fluid domain (Lagrangian flow networks). So far, the
investigations on both types of flow networks have mostly
addressed classical topological network characteristics,
disregarding the fact that such networks are naturally
embedded in some physical space and, hence, have intrin-
sic restrictions to their structural organization. In this
paper, we introduce a novel concept to obtain a comple-
mentary geometric characterization of the local network
patterns based on the anisotropy of edge orientations. For
two prototypical model systems of different complexity,
we demonstrate that the geometric characterization of
correlation-based flow networks derived from scalar
observables can actually provide additional and useful
information contributing to the identification of the

underlying flow patterns that are often not directly acces-
sible. In this spirit, the proposed approach provides a
prospective diagnostic tool for geophysical as well as tech-
nological flows.

I. INTRODUCTION

During the last years, the application of concepts of
complex network analysis has reached a variety of scientific
disciplines.1–4 In a growing number of studies, the analyzed
networks have been embedded in some physical space,5

which implies that their vertices take well-defined positions
and edges describe physical connections (or, more generally,
interdependencies) within this space. Examples for such spa-
tial networks can be found in diverse fields such as infra-
structures (e.g., road networks, power grids),6–8 neuronal
(brain) networks,9 or network representations of the dynami-
cal similarity between climate variations observed at distant
points on the globe commonly referred to as (functional) cli-
mate networks.10–16

Due to their embedding in some metric space, spatial
networks are not completely described by their topological
characteristics. By contrast, the geometric structure of thesea)N. Molkenthin and H. Kutza contributed equally to this work.
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systems often needs to be taken into account as well.17–20

The latter aspect relates to an entirely different class of spa-
tial network characteristics.8 At the vertex level, the spatial
heterogeneity of vertex positions can be quantified by their
local density. Regarding the edges, the spatial vertex density
and connectivity pattern result in a distinct edge length dis-
tribution.8,21 In addition to the latter property, this work pro-
poses characterizing the heterogeneity of the spatial
orientations of all edges associated with a given vertex as a
complementary aspect. For this purpose, we introduce the
concept of edge anisotropy as a geometric means to quantita-
tively describe this feature. In the field of road network anal-
ysis, a conceptually related approach, the orientation or trend
entropy, has been proposed recently, which also character-
izes the heterogeneity of road orientations in physical
space.22–24 Here, we take a more formal approach by
describing the anisotropy of edges at both, vertex level and
global network scale.

In this work, we explore the potentials of the utilization
of edge anisotropy in combination with established topologi-
cal network characteristics for unveiling the spatial connec-
tivity structure underlying geophysical flow patterns.
Specifically, we apply this new concept to characterize the
local spatial organization of two-dimensional flow systems
using spatially embedded functional network representations
based on the linear correlations among the fields of scalar-
valued time series. We do not aim to discuss the possible
limitations of topological network characteristics to describ-
ing such flow patterns (or general spatially embedded net-
works19), but rather to highlight the added value provided by
the additional consideration of geometric properties.

As illustrative examples, we consider two spatio-
temporally discretized flow systems representing (i) advection-
diffusion dynamics of temperature in a simple meandering
flow and (ii) nutrient concentrations in an advection-reaction-
diffusion (ARD) system of ocean currents in the wake of an
island. The thus obtained correlation-based flow networks25 (as
well as similar approaches based on Lagrangian dynamics26,27)
have numerous potential applications in the field of atmo-
spheric or oceanic flows. Note that the term flow network is
sometimes also used as a synonym for transportation networks
in technological applications such as power grids. In contrast
to that, in this work we exclusively consider the aspect of net-
work representations of flows in physical space as exemplified
by geophysical flow patterns or, in a similar way, flows in the
phase space of dynamical systems.

The remainder of this paper is organized as follows:
Section II introduces new geometric network measures char-
acterizing the anisotropy of edge orientations in physical
space. In Sections III and IV, we discuss the relationship
between the topological and geometric characteristics of the
flow networks for the two aforementioned prototypical prob-
lems constructed in different ways. We compare the spatial
patterns of several classical (topological) vertex-based net-
work characteristics and local edge anisotropy in order to
demonstrate that the latter adds a new aspect to the network
characterization. Our main results are summarized and fur-
ther discussed in Section V.

II. ANISOTROPY IN SPATIAL NETWORKS

A. Preliminaries

Consider a network with a vertex set V and an edge set
E ! V " V, where N ¼ jVj denotes the overall number of
vertices. The connectivity pattern of this network is
described by its (unweighted) adjacency matrix A ¼ ðamnÞ
with elements

amn ¼
1; iff fm; ng 2 E
0; else;

!
(1)

where {m, n} denotes an edge from vertex m to vertex n. The
degree km of vertex m, i.e., the number of edges adjacent to
this vertex, is then given by summing up all entries in the
m-th row of A, km ¼

PN
n¼1 amn.

Let us now suppose that the vertices are associated with
well-defined Cartesian coordinates ~xm ¼ ðxð1Þm ;…; xðdÞm Þ in a
d-dimensional Euclidean space. Here, the coordinates are
provided with respect to an arbitrarily chosen origin. For a
given vertex at~xm, each adjacent edge {m, n} or {n, m} con-
necting m (in outward or inward direction, respectively) with
another vertex n located at ~xn can be fully characterized by
its length lmn ¼ k~xn &~xmk and its spatial orientation
described by the unit vector~emn ¼ l&1

mnð~xn &~xmÞ.

B. Local anisotropy

The local anisotropy of edge orientations (or, for short,
local (edge) anisotropy) Rm is a geometric network measure
that characterizes the heterogeneity of orientations of all
edges adjacent to a given vertex and, hence, the spatial
directedness of this vertex’ connectivity. We emphasize that
this aspect is potentially relevant for transport and distribu-
tion networks, where it is commonly advantageous to locate
the sources of material flows (logistic hubs) in the center of
the area to be served rather than at its periphery to minimize
transportation costs.28 This idea calls for a generally high
degree of isotropy of the transportation routes at the distribu-
tor node, which should be reflected by a low value of our
anisotropy measure.

For defining the local anisotropy of a given vertex m in
an unweighted and undirected (amn ¼ anm 8m; n ¼ 1;…;N)
two-dimensional spatial network, we consider the Rayleigh
measure computed from the orientations (measured in terms
of the unit vectors~emn) of all edges adjacent to m

Rm ¼
1

km

XN

n¼1

amn~emn

"""""

""""" 2 0; 1½ (: (2)

Practically, Rm projects the vectors~emn describing the spatial
orientations of all the existing edges adjacent to vertex m
onto the d-dimensional unit sphere, thereby taking their spa-
tial orientation (but not their length) into account, and calcu-
lates the modulus of the vector sum of all corresponding unit
vectors. The normalization by degree km ensures Rm 2 ½0; 1(
for an angular distribution between maximally unfocused
(isotropic, Rm¼ 0) and maximally focused (anisotropic,
Rm¼ 1) edge directions.

035802-2 Molkenthin et al. Chaos 27, 035802 (2017)



In order to illustrate this concept, let us consider the spe-
cial case of d¼ 2, providing a simplified model of geographi-
cal space by neglecting curvature due to the approximately
spherical shape of the Earth’s surface. In this setting, we can
assign a Euclidean angle umn with respect to an arbitrary ref-
erence axis (here, we use the xð1Þ axis without loss of gener-
ality) by setting (cf. Fig. 1)29

umn ¼ arctan
x 2ð Þ

n & x 2ð Þ
m

x 1ð Þ
n & x 1ð Þ

m

 !

: (3)

This corresponds to replacing the former Cartesian coordi-
nates by local polar coordinates centered at~xm, yielding

~xn &~xm ¼ lmn
cos umn

sin umn

# $
: (4)

In this case, we can rewrite Eq. (2) as

Rm ¼
1

km

%%%%
XN

n¼1

amneiumn

%%%%: (5)

A generalization to weighted networks is easily obtained
by replacing the binary adjacency matrix A by the edge
weight matrix W ¼ ðwmnÞ (wmn 2 Rþ 8m; n). In this case, a
proper normalization factor is given by the associated vertex
strength sm ¼

PN
n¼1 wmn replacing km, so that

Rm ¼
1

sm

XN

n¼1

wmn~emn

"""""

""""" 2 0; 1½ (: (6)

A corresponding definition for directed yet unweighted
networks is based on replacing km by the in- and out-degrees
kin

m ; kout
m and taking the sum either over incoming or outgoing

edges, yielding the in- and out-anisotropies, respectively,

Rin
m ¼

1

kin
m

XN

n¼1

anm~emn

"""""

"""""with kin
m ¼

X

n

anm; (7)

Rout
m ¼

1

kout
m

XN

n¼1

amn~emn

"""""

"""""with kout
m ¼

X

n

amn: (8)

As for the undirected case, the generalization to weighted
networks is obtained by replacing amn by wmn and the in- and
out-degrees by the in- and out-strengths sin

m ¼
P

nwnm and
sout

m ¼
P

nwmn, respectively.

C. Related measures

The proposed concept of anisotropy of edge orientations
has several possible extensions as well as linkages to related
characteristics. Although the examples discussed in this
paper will focus exclusively on the local anisotropy in net-
works characterizing spatial flow patterns, we are confident
that some of these extensions are of potential interest for
studying general spatial networks. In the following, we will
briefly discuss some of these aspects.

At the local (vertex) scale, anisotropy can be character-
ized not just by the Rayleigh measure Rm, but also a variety
of other measures from circular statistics such as the circular
standard deviation or Shannon entropy. Notably, the treat-
ment of the Euclidean angles umn in the d¼ 2 case closely
resembles established procedures of phase synchronization
analysis,30 where the umn are replaced by the instantaneous
phase differences between two oscillatory signals and the
degree of phase synchronization can be characterized, among
others, by any of the three aforementioned characteristics
(Rayleigh measure, aka mean resultant length, circular stan-
dard deviation, and Shannon entropy). However, the latter
two have certain disadvantages. On the one hand, the stan-
dard deviation is commonly not normalized. On the other
hand, the Shannon entropy can be normalized, but its estima-
tion relies on some binning of the interval ½&p; p( and can
therefore only be properly performed in case of sufficiently
high vertex degrees.

Going to the global network scale, one common
approach is defining scalar network characteristics by taking
some mean value over an associated vertex measure. A
prominent example for this strategy is the global clustering
coefficient defined as the arithmetic mean of the local clus-
tering coefficients of all vertices in a network.31 In a similar
way, one possibility to characterize the edge anisotropy of
the network at a global scale is taking the mean local
anisotropy

"R ¼ 1

N

XN

m¼1

Rm: (9)

We note that this definition gives different effective weight
to edges associated with vertices of different degrees. To see
this, recall that each Rm is defined as a sum over terms
related to different edges adjacent to m, which contribute to
Rm equally with the same weight 1=km (in the case of
unweighted networks, otherwise 1=sm). Thus, if an edge con-
nects two vertices with low degree, it contributes much
stronger to "R than edges connecting vertices with high
degrees. In order to correct for this effect, we propose study-
ing the global anisotropy

FIG. 1. Schematic definition of the (planar) edge angle umn between two
vertices m and n with given two-dimensional Cartesian coordinates
xð1;2Þm ; xð1;2Þn , which are connected by an undirected edge (as is common for
the correlation-based flow networks considered later in this work). Without
the loss of generality, xð1Þ is used here as the axis of reference for defining
umn for all edges {m, n}.
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R ¼ 1
PN

m;n¼1 amn

"""""
XN

m;n¼1

amn~emn

"""""; (10)

instead, where each edge has the same weight.32 Drawing
upon the analogy to the network’s clustering properties, "R
and R take the roles of the Watts-Strogatz and Barrat-Weight
definitions of the clustering coefficient, respectively,31,33 the
latter of which is also referred to as network transitivity in
the literature.4

As for the local measures, it is also possible to replace
the mean resultant length by the circular standard deviation
or Shannon entropy of edge angles umn in the definition of
global anisotropy properties. While this replacement still suf-
fers from the same conceptual problems as the corresponding
vertex characteristics when considering the mean local prop-
erties, a corresponding modification of the global anisotropy
concept relieves the previous problem of too small sample
sizes (arising especially in the case of sparse networks). In
case of the Shannon entropy, a corresponding measure
(referred to as trend entropy22–24) has been recently used for
the analysis of street network patterns.

Under general conditions, we emphasize that it can also
be interesting to consider the direction of the vector sum of
all unit vectors characterizing the edges adjacent to a given
vertex

~em ¼
PN

n¼1 amn~emn

k
PN

n¼1 amn~emnk
; (11)

(which has straightforward generalizations for weighted and/
or directed spatial networks) instead of just the modulus Rm,
especially for the purpose of visualization of flows on a
given spatial network. In a similar spirit, in certain applica-
tions the length and orientation of the resultant vector ~rm ¼PN

n¼1 amn jj~xn &~xmjj might be of interest as well. However,
this directional aspect (which has been recently studied using
a conceptually related measure in the context of regional cli-
mate network presentations to unveil the spatial structures of
heavy precipitation events34) is beyond the scope of this
work focusing on quantitative rather than qualitative network
characterization.

III. EXAMPLE 1: ADVECTION-DIFFUSION DYNAMICS
IN A STATIONARY FLOW

In the following, we will illustrate how a combination
between classical (topological) network characteristics and
the new concept of local anisotropy can help gain additional
understanding about the structural organization of spatially
embedded systems. For this purpose, we study flow networks
constructed from correlations among fields of scalar observ-
ables for two prototypical flow systems with different levels
of structural complexity. Note that these networks do not
characterize the mean state of the flow under study, but the
spatial interdependence between fluctuations superimposed
to this baseline flow.

A. Discretized advection-diffusion systems

In order to describe the dynamics of a passive scalar field
Tð~x; tÞ in a fluid moving with a given two-dimensional veloc-
ity field~vð~xÞ (an extension to three-dimensional flows is pos-
sible, but shall not be further studied hereafter), we consider
the simplified advection-diffusion equation (ADE)35

@T

@t
¼ jDT &~v ~xð ÞrT þ Dn ~x; tð Þ (12)

for an incompressible fluid (i.e., r *~v ¼ 0), where j is the
spatially constant diffusion coefficient and D is the intensity
of noise superimposed to the deterministic flow equations.
In the following, we will follow the viewpoint of Tupikina
et al.20 and interpret T as a temperature field, where we do
not take possible effects of temperature variations on the
velocity field~vð~xÞ into account, but leave the latter indepen-
dent of temperature. In this case, the temperature can be
interpreted as a passive observable even though it could
play an active role as a dynamically relevant variable if the
more general case of full thermo- and hydrodynamical
equations is considered. For our further considerations, we
assume a thermally isolated domain, implying that the ther-
mal conditions of the medium outside this domain do not
affect those inside. For simplicity, we consider dimension-
less variables, a time-independent velocity field, and uncor-
related Gaussian white noise with zero mean, unit variance,
and no spatial or temporal correlations (i.e., hnð~x; tÞnð~y; t0Þi
¼ dð~x &~yÞdðt& t0Þ).

For constructing a flow network based on the scalar tem-
perature field Tð~x; tÞ, we first consider a spatio-temporal dis-
cretization of Eq. (12) without the stochastic diffusion term,
using an Euler scheme and a regular square lattice with spa-
tial resolution Dx.36 The corresponding discretization param-
eters Dx and Dt are chosen such to fulfill the Courant-
Friedrichs-Lewy conditions37 to ensure the stability of the
discretization scheme. Letting i and j denote the grid indices
in the x- and y-direction, respectively, and ~vi;j ¼ ðvx

i;j; v
y
i;jÞ

being the fluid velocity at a given grid point, the discretized
ADE at time step t0 takes the form

Ti;jðt0 þ 1Þ ¼ ð1& 4jÞTi;jðt0Þ
þ ðj& vx

i;j=2ÞTiþ1;jðt0Þ þ ðj& vy
i;j=2ÞTi;jþ1ðt0Þ

þ ðjþ vx
i;j=2ÞTi&1;jðt0Þ þ ðjþ vy

i;j=2ÞTi;j&1ðt0Þ:
(13)

Due to the considered boundary conditions as described
above, some of the coefficients in Eq. (13) corresponding to
the vertices at the boundary of the considered spatial domain
take zero values. We emphasize that the employed discreti-
zation scheme is intentionally kept very simple and does not
consider the more complex structure of schemes commonly
used in geophysical or technological flow dynamics.
Specifically, in the present example, both scalar field (tem-
perature) and vector field (flow velocity) are calculated at the
same grid.

Taken together, the dynamics of the discretized scalar
temperature field ~Tðt0Þ ¼ ðT1ðt0Þ;…; TNðt0ÞÞ (t0 ¼ 0;…; t& 1)
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under the action of the underlying flow can be approximated
by a linear recursive equation with additive noise

~Tðt0 þ 1Þ ¼ P~Tðt0Þ þ s~!ðt0Þ; (14)

where P is a matrix approximating the time-evolution opera-
tor of the advection-diffusion process, and~!ðt0Þ is a vector of
independent Gaussian random variables of zero mean and unit
variance, uncorrelated at different time steps. s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DDt=Dx2

p

denotes the intensity of the discretized noise,36 which we set
to 1 in the following. Neglecting the stochastic term in this
vector autoregressive model equation, we can easily obtain
the matrix elements of P from the coefficients of the discre-
tized ADE in Eq. (13). In particular, the time-evolution matrix
P can be constructed for each given stationary velocity field.
In this case, P is a time-independent matrix itself. In addition,
Eq. (14) can be extended to incorporate secondary effects
such as an external perturbation in some part of the domain of
interest (see below).

Following the previous considerations, Eq. (14) allows us
to generate a field of time series from an initial temperature
field ~Tð0Þ, which we assume here to be zero everywhere with-
out the loss of generality since the resulting asymptotic dynam-
ics are independent of the initial conditions.20 Specifically,
solving Eq. (14) for t time steps yields a vector moving-
average process of order t describing the temperature dynamics
at each grid point depending on the imposed noise

~TðtÞ ¼
Xt&1

k¼0

Pt&1&k~!ðkÞ; (15)

where the advective dynamics is fully encoded in the matrix
elements of P.

The latter observation is useful for obtaining an analyti-
cal representation of the covariance matrix C between the
temperature evolutions at all grid points from the discretized
time-evolution operator. Note that the covariance between
two time series with zero mean is generally defined as the
sum over the products of all simultaneously observed values
of the two time series, i.e., the scalar product of the two vec-
tors. In a similar spirit, the covariance matrix taking all grid
points into account is defined as the sum over the respective
tensor products of concurrent temperature values. Due to the
imposed noise, we take the expectation value yielding

C ¼
Xt

t0¼0

~Tðt0Þ + ~Tðt0Þ

* +

¼
Xt

t0¼0

Xt0&1

k¼0

Xt0&1

k0¼0

hPt0&1&k~!ðkÞ + Pt0&1&k0~!ðk0Þi: (16)

By evaluating the expectation values in the inner sums, the
latter equation can be conveniently reformulated as

C ¼
Xt

t0¼0

Xt0&1

k¼0

ðPPTÞt
0&1&k; (17)

which converges if jkmaxj , 1 with kmax being the eigenvalue
of P with the largest modulus. By normalization with respect

to the diagonal elements of C, one easily obtains the associ-
ated correlation matrix C. In the latter, the entry Cmn denotes
the lag-zero correlation coefficient between the time series
TmðtÞ and TnðtÞ.

B. Meandering flow model

As a specific example, we consider a stationary velocity
field representing a variant of the classical two-dimensional
meandering flow model38–42 (Fig. 2(a))

~v x; yð Þ ¼ v0 &
@w
@y

;
@w
@x

# $
; (18)

with the velocity magnitude v0 and the stream function

W x; yð Þ ¼ 1& tanh
y& sin 2x

cos arctan cos 2xð Þð Þ

' (
; (19)

where v0 ¼ 0:2 has been chosen such that the maximum
velocity at all grid points does not exceed 0.5.

For the discretization scheme, we use Dt ¼ Dx ¼ 1 and
a square lattice of 40" 40 grid points, yielding N¼ 1600
vertices of the flow network. In order to comply with the
Courant-Friedrichs-Lewy criteria jDt=ðDxÞ2 , 1 and
Dt *max~x j~vð~xÞj , Dx, we consider a dimensionless thermal
diffusion coefficient of j ¼ 0:01. The integration time of the
system was taken as t¼ 20.

In addition to the unperturbed flow, we consider the case
where some part of the flow domain is affected by an exter-
nal perturbation. For example, consider a region where the
fluid has a larger heat capacity or is “externally heated” (see
Fig. 2(b)). This perturbation is realized by adding an addi-
tional term to the diagonal elements of P, yielding

P0 ¼ PþH: (20)

Here, H is a diagonal matrix with entries hmm> 0 in exter-
nally heated regions and hmm¼ 0 elsewhere. For the sake of
simplicity, we just take uniform hmm¼ 0.03 for all grid
points m inside the perturbed region highlighted in Fig. 2(b),
leaving the detailed exploration of other settings a subject
for future work. After a possibly necessary renormalization
to ensure convergence, P0 again serves as a discretized time-
evolution operator of the ADE process under the considered
stationary flow.

C. Flow network construction

The correlation matrix of the discretized ADE system as
derived above can be directly re-interpreted as the weight
matrix of an undirected weighted flow network by setting

wmn ¼ Cmn & dmn; (21)

where dmn is Kronecker’s delta used for removing the trivial
correlation of each grid point with itself. Here, the consid-
ered grid points represent the vertices of the constructed net-
work. Given the dynamics of ~T and the associated estimate
of C based on P, this network directly represents the linear
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correlations among the temperature variations observed at all
grid points m ¼ 1;…;N.

Before further analysis, it is important to highlight the
practical interpretation of the thus constructed flow network.
For the considered homogeneous initial conditions Tmð0Þ ¼
08m 2 V in the absence of additional gradual perturbation
H, the mean temperature field will be described by a homo-
geneous equilibrium. However, the correlation-based flow
networks do not characterize the corresponding mean state,

but the spatial interdependencies between fluctuations super-
imposed to this equilibrium. Both diffusive and advective
terms transport the noisy input signal, implying that the fluc-
tuations at nearby spatial locations are correlated even in the
case of independent noise. However, the corresponding cor-
relations can be expected to be no simple functions of the
spatial distance between two vertices, but also reflect the
structure of the underlying velocity field. In this spirit, the
correlation-based flow network should contain information

FIG. 2. (a), (b) Velocity field of the
meandering flow example (colors indi-
cating the velocity modulus prior to
rescaling by the factor v0, arrows the
flow direction) without (a) and with (b)
a perturbed region (shaded area, see
the main text for further details). In
addition, the vertex strengths (c), (d)
and local anisotropies (e), (f) of the
associated flow networks are shown
for the unperturbed (c), (e) and per-
turbed case (d), (f). Panels (g) and (h)
display the two-dimensional histo-
grams of local anisotropy and vertex
strength (colors indicating the fre-
quency of all combinations between
the respective values). Note that the
corresponding axes show the values of
both network measures, which is dif-
ferent from panels (a)–(f) where the
spatial positions of vertices are indi-
cated. Notable groups of many vertices
with approximately the same strength
and anisotropy (see discussion in the
main text) are additionally highlighted
by dashed circles.

035802-6 Molkenthin et al. Chaos 27, 035802 (2017)



on both diffusive and advective structures (and, hence, the
considered flow pattern). In the following, we will examine
qualitatively how different flow network characteristics can
be used for inferring the corresponding information.

D. Flow network characteristics

In order to study the spatial connectivity patterns of the
correlation-based flow network, we first consider the individ-
ual vertex strengths sm. For purely advection-diffusion based
systems, it was shown previously25 that a high degree com-
monly indicates high velocity. This observation is further
supported by our example (to see this, compare the high-
velocity regions in Fig. 2(a) and 2(b) with the locations of
vertices with high strength in Fig. 2(c) and 2(d)). The reason
for this behavior is that the vertex strength characterizes the
weighted fraction of other locations at which the variability
of the considered scalar variable (temperature) is strongly
correlated with that at the reference location. Since the part
of the flow domain that can be substantially affected by fluc-
tuations at a given site is larger in case of a high local veloc-
ity, the coincidence between velocity maxima and locations
with elevated vertex strength is not surprising. However, Fig.
2(d) additionally reveals that the vertex strength can also be
elevated due to a common trend at all vertices in a certain
area within the discretized scalar field ~T increasing the corre-
lation coefficients among these vertices. Similar observations
have been made recently for the degree fields of climate net-
works constructed from surface air temperature anomalies in
the presence of volcanic eruptions or strong El Ni~no
episodes.43

According to the latter result, it is evident that another
network measure is necessary to distinguish between the
effects of external heating and high velocity. As a potential
candidate, the local anisotropy of the system is shown in Fig.
2(e) and 2(f). We observe that this measure provides a dis-
crimination of the flow domain into subdomains that differ
markedly from what is shown by the vertex strength:

First, as for the aforementioned topological flow net-
work property, regions of low velocity are characterized by a
homogeneous baseline anisotropy. In this part of the flow,
diffusive propagation of fluctuations may be expected to
contribute stronger relative to advective transport than in
other regions of the flow domain, even though the advective
contribution may still dominate.

Second, the locations with maximum velocity are char-
acterized by similar anisotropy values as the slow flow
regions. This behavior can be interpreted by the fact that in
the center of the straight flow segments where the velocity is
the highest, many other vertices can be reached by edges
with relatively high weight. Due to the finite number of verti-
ces in the considered domain, these edges cannot be predom-
inantly oriented in parallel to the local flow direction, but
also connect to various other sites, which results in a more
isotropic spatial pattern than one might actually expect.

Third, we find areas with relatively straight flow and ele-
vated local anisotropy, which are displaced from the maxi-
mum velocity sites perpendicular to the flow direction. We
may interpret these locations as showing some kind of

“optimal situation” where the orientation of edges follows as
much as possible the flow direction.

Finally, in contrast to the areas with high fluid velocity
and straight flow geometry, if the (stationary) flow is fast but
curved (especially at the turning points of the meanders), the
locally linear geometric alignment of the most strongly cor-
related vertices is relieved, resulting in considerably reduced
anisotropy values. In fact, we observe the lowest anisotropy
values among all vertices in those regions where the flow
takes a sharp turn. Moreover, the local anisotropy values are
also slightly reduced in regions of slow flow, where diffusive
heat transport has a larger relative importance in comparison
with the advective one than under fast flow conditions.
Hence, the correlations among temperature fluctuations can
also be relevant in directions perpendicular to the flow.

Another notable finding is the absence of marked differ-
ences between the cases without and with external heating in
the area where the perturbation is applied—with the excep-
tion of the boundaries of the perturbed domain that still devi-
ate from the almost constant background anisotropy values.
Specifically, we observe stripe-like structures with reduced
anisotropy along the boundaries of the perturbed region,
where the perturbation causes a discontinuity in the observed
scalar field and thus leads to differences between the weights
of edges connecting vertices in the unperturbed (perturbed)
subdomains and such connecting both subdomains. We con-
clude that in combination with the vertex strength, local
anisotropy can be used to distinguish high velocity areas
from regions with common temperature trends due to exter-
nal forcing. This result suggests that anisotropy and related
geometric network properties are potentially useful tools for
the analysis of correlation-based flow networks, but also
other spatial networks such as climate networks.

We emphasize that to this end, the explanations detailed
above should be considered as hypotheses that need to be
further tested by means of additional statistical analyses,
which are outlined for future research.

In order to gain further understanding of the complex
interplay between vertex strength and anisotropy, Fig. 2(g)
and 2(h) shows scatter plots between both characteristics for
the cases without and with external perturbation. In the
unperturbed case (Fig. 2(g)), we find a large group of verti-
ces corresponding to the large area of slow stationary flow,
which are characterized by relatively low strength and
medium anisotropy values (dashed circle). Vertices from the
faster flow area (i.e., with larger strength) show a relatively
broad range of anisotropy values, depending on whether the
respective vertices are located at a turn (low Rm) or a straight
segment of the flow pattern (high Rm). In the case of the per-
turbed flow (Fig. 2(h)), the network maintains these basic
features. However, much of the empirical distribution of ver-
tex strengths is shifted towards lower values, reflecting the
fact that the correlations between vertices in the perturbed
region are elevated due to a common trend, while those of
the remaining vertices compensate for this effect by showing
generally lower strengths than in the unperturbed case (as
also shown in Fig. 2(c) and 2(d)). Specifically, the existence
of a homogeneously perturbed region results in a second
group of many vertices with approximately the same strength

035802-7 Molkenthin et al. Chaos 27, 035802 (2017)



and anisotropy (right dashed circle in Fig. 2(h)), which corre-
sponds to the vertices at grid points with low velocity modu-
lus but external heating. In turn, the original group of
vertices with approximately the same network characteristics
(dashed circle in Fig. 2(g)) is shifted towards lower vertex
strengths while maintaining their anisotropy values (left
dashed circle in Fig. 2(h)). Thus, the considered perturbation
prominently influences the distribution of vertex strengths
(i.e., a topological network measure) while retaining most of
the anisotropy values (i.e., a geometric characteristic).
Future studies should address the question of whether similar
observations also apply to other flow network characteristics.

IV. EXAMPLE 2: NUTRIENT DYNAMICS IN A COMPLEX
ADVECTION-REACTION-DIFFUSION SYSTEM

The previously discussed example has been characterized
by a relatively basic flow pattern. In order to demonstrate that
the concept of edge anisotropy is also useful for the character-
ization of more complex flows, in the following we consider a
paradigmatic model of a marine current system originally
motivated by particle transport in the wake of the Canary
Islands. Here, the dynamics of interest is described by an
advection-reaction-diffusion (ARD) system, which was
already investigated in-depth in previous studies.44,45 In the

considered setting, a biological model of a marine food web
containing available nutrients and different plankton popula-
tions is driven by the mesoscale hydrodynamical flow struc-
tures in the region. The velocity field is prescribed by a time-
periodic stream function and consists of a main background
flow, an upwelling region with an Ekman drift and a von
K#arm#an vortex street. The vortices emerge in the wake of the
island due to its role as a major obstacle to the flow and dis-
play a mutual phase difference of half the period of the stream
function. Unlike in the simple example in Section III, the
nutrient concentrations are modeled on a regular Eulerian
grid, while the flow dynamics is obtained by means of a
Lagrangian approach.

Figure 3 displays the nutrient concentrations (replacing
the temperature field of the previous example as a scalar
observable) for different phases during one full period of the
flow. The vortices in the wake of the island periodically
detach with alternating signs of rotation and then travel along
the main flow. It was shown45 that, depending on the vortex
strength, the vortex patterns can either prohibit or permit
transport of nutrients and plankton across the wake. In this
study, we restrict our attention to the simulated nutrient time
series x̂mðtÞðt ¼ 1; ::;T; m ¼ 1; ::;NÞ as tracers that could be
used for the reconstruction of the (possibly unknown) physical
flow in the complex hydrodynamical system. Specifically,

FIG. 3. Exemplary snapshots of nutri-
ent transport dynamics. The six panels
(a)–(f) depict successive states of nutri-
ent concentrations (colors, arbitrary
units) during one period (TC¼ 10 time
steps) of the periodic time evolution of
the flow. Time is measured in units of
TC. The island and the upwelling
region are represented by the circle
and rectangle, respectively.
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following the original analysis of the model in Ref. 44, there
are several distinct spatial domains associated with different
transport regimes, primarily including the area of and around
the upwelling region (U) in the upper left part of the study
area, the central plume region (P), and the upper laminar
transport ribbon (R), see Fig. 4.

A. Flow network construction

Different from the previous example, we follow the
“classical” approach of empirically estimating pairwise cor-
relation coefficients between the simulated nutrient time
series at each grid point as the basis for flow network con-
struction. In order to eliminate spurious correlations due to
spatial auto-correlations and to mimic the effect of observa-
tional noise in real-world geophysical data sets, standard
Gaussian white noise !mðtÞ - x̂mðtÞ with zero mean and unit
variance is first added to the original time series x̂mðtÞ:

xmðtÞ ¼ x̂mðtÞ þ !mðtÞ: (22)

Notably, this stochastic perturbation is about 1–2 orders of
magnitude smaller than the typical range of nutrient concen-
trations (cf. Fig. 3). The resulting noisy time series xmðtÞ are
normalized to obtain records with zero mean and unit vari-
ance at each grid point.

Subsequently, we use the thus obtained data set for con-
structing a flow network with N¼ 6161 vertices. Here, each
vertex again represents a grid point and its associated time
series of normalized nutrient concentrations. Statistical sim-
ilarity between the time-evolution at two grid points m and
n is measured by means of the lagged Pearson cross-
correlation

Cmn ¼ max
s2½&TC ;0½

hxmðtÞxnðt& sÞi: (23)

Although it does not account for nonlinear interdependencies
between time series, Pearson correlation was chosen here
because of its lower computational costs (and higher robust-
ness of estimates from short time series) in comparison with
potential alternative measures. Moreover, Pearson correlations
are most commonly utilized in current studies on climate net-
works. However, in the example studied here, the obtained
results do not change markedly when using other similarity
measures such as Spearman’s Rho or Kendall’s Tau (not
shown). The choice of a small negative time lag s makes the
resulting network directed and ensures the correct edge
direction.

The above description of our example setting high-
lights three important differences in comparison with the
first model system studied in Section III: (i) We have to
cope with a non-stationary (more specifically, periodic)
velocity field rather than a stationary one. (ii) The overall
complexity of the system is larger. (iii) We study the corre-
lations reflecting the non-trivial deterministic dynamics of a
scalar variable instead of such between exclusively stochas-
tic fluctuations, which are relatively weak in the second
example due to the low magnitude of the imposed noise. As
a fourth distinctive difference, in the following, we consider
an unweighted network representation. For this purpose, we
select an a-percentile of the empirical distribution of all
non-diagonal elements Cmn (m 6¼ n) of C, denoted as C.,
and set

amn ¼ HðCmn & C.Þ & dmn; (24)

where Hð*Þ denotes the Heaviside function and dmn is again
Kronecker’s delta. A ¼ ðamnÞ represents the adjacency
matrix of the resulting flow network, capturing the “statistical
backbone” of the underlying velocity field based on the sca-
lar observables xm. A corresponding thresholded correlation
approach is widely used for constructing functional networks
from spatio-temporal data sets in a variety of disciplines
ranging from climatology10 over neurosciences46 to
economics.47

Figure 5 shows the obtained distribution of lagged maxi-
mum correlation values. It can be recognized that this distri-
bution has marked positive skewness and a unimodal shape
with a mode at C / 0:2 that originates from the majority of
noisy and pairwise at most weakly correlated—or in several
cases even practically uncorrelated—time series. The latter
are neglected in the network construction by employing a
correlation threshold of C. ¼ 0:95. Thereby, we derive a
directed network (since commonly Cmn 6¼ Cnm) with an edge
density of q ¼ K=NðN & 1Þ ¼ 0:0036 (implying that C. cor-
responds to the 99.64% percentile of the empirical distribu-
tion of all pairwise correlation values). Clearly, the absolute
number of edges depends on the distribution of correlation
values Cmn and the specific threshold C.. For the observed
right-tailed distribution of correlation values (Fig. 5), suffi-
ciently high C.! 0:8 guarantee qualitatively robust flow net-
work patterns.

FIG. 4. Spatial patterns of the mean Pearson correlation (Eq. (23)) of each
grid point in the complex flow pattern with all other grid points,
Cm ¼ N&1

PN
n¼1 Cmn. The three marked regions indicate the surrounding of

the upwelling region (U), the ribbon (R), and the plumes region (P). Note
that the distinction between these regions has not been made based on the
shown correlation values, but general considerations on the physical mecha-
nisms of the model. The multiplicity of apparently discrete ribs with high
mean Pearson correlation in the plume region arises due to the discrete sam-
pling of the considered nutrient concentrations in time in combination with
the imposed periodicity of the flow.
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B. Flow network characteristics

Even without the construction of a flow network, we can
already visually identify the previously mentioned three dis-
tinct regions of interest (ROIs) from the spatial patterns of
mean correlations (Fig. 4). In the following, we will further
characterize the flow regimes within these three regions by
means of our network measures, thereby interpreting the cor-
relation structure underlying the flow network more thor-
oughly. In addition to the resulting spatial patterns of degree
and local anisotropy, we also employ three complementary
flow network characteristics widely used in complex network
studies across disciplines4

• betweenness Bm, which measures the fraction of shortest
paths in the network that traverse a vertex m,

• local clustering coefficient cm, giving the probability of
vertices connected with m to be mutually connected
among themselves, and

• mean edge length "lm, quantifying the average spatial dis-
tance covered by the edges starting at m.

In what follows, for the topological network characteris-
tics we will restrict ourselves to the discussion of undirected
network measures—despite the fact that the constructed flow
network is directed. Specifically, we consider each edge in
the network to be bidirectional if it is present in at least one
direction. There are two reasons for making the correspond-
ing simplification: On the one hand, there is no unique local
clustering coefficient for directed networks; instead, one has
to distinguish between different motifs composed of three
vertices.48 On the other hand, at least for the degrees we find
a rather large correlation between in-degree and out-degree
fields (r / 0:82), indicating that both properties reveal at
least qualitatively similar information. Note that this is dis-
tinctively different for the anisotropy, where the values of
Rout

m for the directed and Rm for the undirected flow network
hardly show any statistically relevant correlation. Therefore,
we will specifically consider the out-anisotropy as the geo-
metric measure of choice. The in-anisotropy may provide
possibly relevant information complementary to Rout

m , but

shall not further discussed here for brevity. A more detailed
comparison between directed and undirected geometric char-
acteristics will be a subject of future work.

For a concise overview, the main results of our analysis
are briefly summarized in Table I. This synthesis shows that
the three dynamical regions P, U, and R exhibit unique fea-
tures when considering the combinations of the selected net-
work measures. None of the measures alone is sufficient for
obtaining a classification of the corresponding regions and
associated transport regimes. In turn, the latter task can only
be achieved when the different measures are combined.

Our combined analysis of the spatial patterns displayed
by the different topological and geometric network proper-
ties (see Fig. 6) reveals a detailed picture of the inherent cor-
relation structure and its resulting signatures in the flow
network. In this context, note that for the applied very high
correlation threshold C., the flow network contains a large
number of isolated vertices outside the regions U, P, and R.
In the following, we will only consider those parts of the net-
work that are actually connected under the given setting.

The surrounding of the upwelling region (U) exhibits
intermediate values of degree, local clustering coefficient,
and local anisotropy. In combination with very low values of
the mean edge length, the corresponding part of the flow net-
work is characterized by a rather localized connectivity with
transport patterns of not strongly focused directionality.
Accompanied by very high values of betweenness centrality
in this region, a local and short-range transport regime is
indicated. This interpretation agrees with the high nutrient
concentration being slowly released from the upwelling
region (indicated by the rectangular shape in Fig. 4) and fed
into either the vortex region in the wake of the island or the
ribbon region before being advected out of the study area.

The central plumes region (P) shows low values of mean
edge lengths but very high degrees and high local clustering
coefficients, pointing to a dense and spatially localized connec-
tivity.43 In combination with a broad range of betweenness and
anisotropy values, this indicates a relatively slow propagation
of the nutrient concentration patterns. The areas of higher
anisotropy along the upstream border of the plumes (Fig. 6(e))
probably reflect that there are hardly any strong correlations
with vertices that are even closer to the circular obstacle. In
turn, given the consistently low edge length (Fig. 6(d)), a

TABLE I. Synthesis of typical ranges of local network measures inside the

three distinct regions plumes (P), upwelling (U), and ribbon (R) of the flow
network constructed from nutrient concentrations. In order to support the
visual analysis of spatial patterns of network characteristics in the different

ROIs (Fig. 6), a classification is provided in qualitative terms (very low, low,
moderate, high, very high, and various in case of more ambivalent values).

ROI Plumes Upwelling Ribbon

Range in xð1Þ 2.6 1.3 1.5

Range in xð2Þ &1.1 1.2 /2

Mean edge length "lm Low Very low High

Degree km High Moderate High

Betweenness Bm Various Very high Very high

Clustering coefficient cm High Moderate Moderate

Out-anisotropy Rout
m Various Moderate High

FIG. 5. Empirical distribution p(C) of correlation values for the complex
flow example. The solid line shows a kernel density estimate; the dashed
line represents the minimum correlation threshold of C. ¼ 0:95 used for the
flow network construction.
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strong correlation with the other parts of the plume in the suc-
cessive time steps is plausible. A sole effect of spatio-temporal
autocorrelations can be practically ruled out due to the consid-
eration of possible time lags. Moreover, we observe low local
anisotropy values in the region between transport ribbon and
plumes, which are exactly those regions where the flow

changes its direction sharply. This observation matches well
with the corresponding results for the more basic meandering
flow pattern studied in Section III. In a similar way, the lower
anisotropy values at the downstream end of the plume region
probably reflect the fact that due to the periodicity of the flow,
in this region there exist strong correlations with vertices in

FIG. 6. Local properties of the complex flow network: (a) (logarithm of) degree, (b) (logarithm of) betweenness, (c) local clustering coefficient, (d) mean edge
length, and (e) local out-anisotropy. For the interpretation of the measures as well as their meaning in combination, see the main text. A concise overview is
given in Table I.
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various different directions, but with possibly different lags
(note again that we did not consider lag-zero correlations here,
but explicitly allow for certain time delays).

Finally, the upper transport ribbon (R) is distinguished
by a strong and long-ranging transport regime of relatively
laminar character. This is indicated by high values of mean
edge length and degree, as well as a strong directionality,
suggested by high anisotropy values and very high values of
betweenness. The local clustering coefficient in this region is
bound to moderate values, which supports the interpretation
of a relatively small number of interconnections with other
parts of the flow and, thus, a comparably straight connectiv-
ity pattern.

The classification of different transport regimes coincid-
ing with the regions of vertices with distinguished properties
is further underpinned by the joint probability densities of
pairs of network characteristics displayed in Fig. 7(a)–7(d).
For example, the plumes region (P) is represented by a group
of many vertices with high degree and a broad range of
betweenness values (Fig. 7(c)). At the same time, this group
exhibits a broad range of edge anisotropy values (Fig. 7(a))
and relatively low values of mean edge length (Fig. 7(d)). In
a similar way, the two other ROIs are associated with differ-
ent groups of vertices visible in Fig. 7.

In summary, by combining the different structural and
geometric aspects, the dynamical features of the system
encoded in the correlation structure can be recovered.
During the analysis, edge anisotropy contributed a so far
missing aspect to the identification and differentiation of the
distinct regions and helped to point out different dynamical
regimes of transport in these regions.

V. CONCLUSIONS AND OUTLOOK

Complex networks embedded in some physical space are
often only partly described by their topological characteristics.
Specifically, it is known that many classical network properties

(focusing exclusively on the mutual linkage between vertices)
are strongly predetermined by the spatial positions of vertices
and edges.9,19 Examples for this phenomenon include climate
networks43,49 and brain networks.9 Taking this additional infor-
mation into account, a more holistic picture of the system’s
structural organization can be drawn.

In the context of geometric network properties, previous
attention has mostly focused on the edge length distributions
and “trend” (edge orientation) entropies, the latter being
exclusively used in the field of road network analysis so
far.22–24 Beyond the latter concepts, the present work has
introduced a new measure for quantifying the anisotropy of
edges adjacent to a given vertex in a spatial network. The
proposed approach can be generally applied to characterizing
the spatial structure of networks in a variety of fields. One
prominent potential application are road networks7,8 or,
more generally, infrastructures, where cost-optimization typ-
ically calls for explicit consideration of spatial constraints
when building the network.6,28 We are confident that the rel-
evance of geometric network characteristics is particularly
high in such systems, even more than for the flow network
examples considered in the present work.

In the present work, we have restricted our attention to
flow networks embedded in a two-dimensional Euclidean
space with Cartesian coordinates. Notably, there exist also
numerous examples of spatial networks naturally having a
three-dimensional structure, including network representa-
tions of the Earth’s atmosphere,50 ocean currents,51 the human
brain,9 intracellular transport, or technical flow systems.52

The framework proposed here is general enough to be directly
applicable to such networks as well. Moreover, in the case of
non-Euclidean geometries,53 one can extend the local and
global anisotropy characteristics defined in this work by utiliz-
ing concepts from differential geometry, i.e., incorporating
the curvature tensor of the respective metric space.

By applying the novel concept of local anisotropy to
two correlation-based flow networks constructed in different

FIG. 7. Pairwise joint probability dis-
tributions of selected network mea-
sures in the complex flow network.
Colors again indicate the frequency of
combinations of the values of the dif-
ferent measures.
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ways, this paper has contributed to the ongoing development
of a new correspondence principle for the investigation of
spatially embedded networks representing dynamical sys-
tems. In combination with classical topological network
characteristics such as vertex degree, the local anisotropy
facilitates the identification of macroscopic regions that
exhibit directed flow and, hence, transport. We have demon-
strated the potential usefulness of our approach for two phys-
ically well-understood prototypical model flows of different
size and complexity. Notably, what we suggest is applying
topological and geometric characteristics in parallel in order
to get as much as possible information from the studied flow
networks. Only by the combination of both aspects, informa-
tion on the underlying flow structure can be obtained, which
may otherwise be overlooked if only either classical topolog-
ical network characteristics or geometric properties are stud-
ied. We do not consider any of the two as being superior to
the other, but as complementary and useful viewpoints.

One main potential field of application of correlation-
based (functional) flow networks as studied here is qualita-
tively deducing information about the hard to observe velocity
field of geophysical flows based on similarity patterns of more
directly observable scalar variables such as temperature, sea-
surface salinity, or nutrient or phytoplankton concentrations,
where large-scale data sets have recently become available
from extensive remote sensing campaigns. Although this
approach does not allow for a detailed quantitative reconstruc-
tion of the flow itself, by jointly assessing conceptually differ-
ent topological and geometric properties of flow networks,
relevant flow structures can be identified and possibly attrib-
uted. Specifically, different domains of the flow (e.g., advec-
tion versus diffusion-dominated areas) are characterized by
different combinations of values of these network measures.
This aspect becomes especially important when investigating
less well-understood systems and phenomena, where the
detailed physical description and understanding is still a sub-
ject of the ongoing research. In this spirit, our results may pro-
vide a basis for gaining a better understanding of the spatio-
temporal organization of a broad variety of complex systems,
including possible applications to climate, human neuro-
physiology, or transportation systems.

We emphasize that the consideration of complementary
aspects for exploring unknown phenomena in some data-
driven way commonly provides a more detailed picture than
focusing on individual measures. Notably, this statement is
supported by other recent studies on flow networks,20,25 where
no unique correspondence between the values of commonly
studied topological network measures such as degree or
betweenness and the underlying flow structures could be
found.

One aspect neglected by the correlation-based approach
followed in this as well as many other recent contributions to
this field is that the consideration of dynamical similarities
disregards the available more detailed information on the
temporary dynamics, which would be particularly relevant in
case of non-stationary flows commonly observed in geophys-
ical systems such as the atmosphere and oceans54 or in neu-
roscience. More detailed studies of the latter cases call for
alternative approaches such as a time-resolved analysis43 or

coarse-graining the dynamics and studying it within some
Markovian framework, where networks are constructed
based on transition probabilities between discrete “states.”55

A detailed exploration of the latter type of approach will be
subject of future research.

Finally, we emphasize that in the general case of spatial
networks, vertices may not be located at a regular grid as in
the examples considered in this work, but are often distributed
irregularly in space (e.g., in the case of infrastructure net-
works). In such cases, the possible values of local anisotropy
are heavily constrained by the considered vertex configura-
tion. Even for the flow networks studied here, the fact that we
have used finite spatial domains leads to a systematic bias of
both topological and geometric network properties in compar-
ison with the case of an infinite domain. For topological char-
acteristics, a possible solution to this problem has been
suggested in Ref. 49, which replaces the network measure
under study by a corresponding z-score like quantity, which is
normalized by mean and standard deviation of the measure
for randomized networks with the same spatial vertex configu-
ration. However, one has to bear in mind that an uncon-
strained randomization may not necessarily provide a
reasonable benchmark scenario, while “network surrogates”
conserving local or even global topological and/or geometric
characteristics (such as degree distribution, local degree, and
global or local edge length distributions) can be considerable
alternatives.19 This issue should be addressed in some more
detail in future work.
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