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How basin stability complements the
linear-stability paradigm
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The human brain1,2, power grids3, arrays of coupled lasers4

and the Amazon rainforest5,6 are all characterized by
multistability7. The likelihood that these systems will remain
in the most desirable of their many stable states depends on
their stability against significant perturbations, particularly
in a state space populated by undesirable states. Here we
claim that the traditional linearization-based approach to
stability is too local to adequately assess how stable a state
is. Instead, we quantify it in terms of basin stability, a new
measure related to the volume of the basin of attraction. Basin
stability is non-local, nonlinear and easily applicable, even
to high-dimensional systems. It provides a long-sought-after
explanation for the surprisingly regular topologies8–10 of neural
networks and power grids, which have eluded theoretical
description based solely on linear stability11–13. We anticipate
that basin stability will provide a powerful tool for complex
systems studies, including the assessment of multistable
climatic tipping elements14.

Complex systems science relies heavily on linear stability analy-
sis, in which state of a dynamic system (more correctly, its dynamic
regime) is assessed basically by inspecting the dominant curvature
of the potential energy function in the state’s surroundings (as
expressed by Lyapunov exponents). The absolute value of the
curvature measures the speed of convergence or divergence after
a small perturbation, and its sign qualifies the state as stable or
unstable. Such linearization-based considerations are inherently
local; therefore, they are not sufficient to quantify how stable a
state is against non-small perturbations. Quantification of stability
in this sense requires a global concept: the basin of attraction B
of a state is the set of initial points in state space from which the
system converges to this state. Complete knowledge of the basin
would allow us to fully assess the state’s stability: one could classify
perturbations into the permissible and the impermissible. See Fig. 1.

However, basins are intricate entities15 and especially hard to
explore in high dimensions. Here we therefore focus on a single but
fundamental property: the basin’s volume. The authors of ref. 16
interpret the volume of a state’s basin of attraction as a measure
of the likelihood of arrival at this state, that is, as a measure of the
state’s relevance. Almost equivalently, we understand the volume
of the basin as an expression of the likelihood of return to the state
after any random—possibly non-small—perturbation. This yields
a second interpretation: the basin’s volume quantifies how stable a
state is. To the best of our knowledge, this interpretation has not yet
been employed in complex systems science.We refer to the quantifi-
cation of stability based on the basin’s volume as basin stability SB.

For climatic tipping elements14 it would be particularly useful
to know how stable the desirable (that is, present) state is against
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Figure 1 | Thought experiment: marble on a marble track. The track is
immersed in a highly viscous fluid to make the system’s state space
one-dimensional. Dashed arrows indicate where the marble would roll from
each position. A, B and C label fixed points. Only B is stable. The green bar
indicates B’s basin of attraction B. If the marble is perturbed from B to a
state within the basin, it will return to B. Such perturbations are
permissible. Perturbations to states outside the basin are impermissible.
The dashed parabola shows the local curvature around B, fitting the true
marble track poorly in most of the basin.

perturbations. One such tipping element is the Amazon rainforest,
which presumably possesses two stable states: the present fertile
forest state and a barren savanna state5,6. A transition would
emit huge amounts of carbon dioxide captured in the rich
vegetation. Amazonian bistability arises from a positive feedback:
deep-rooting trees take up water stored in the soil and transpire
it to the atmosphere. Thereby, forest cover in an area increases
overall precipitation and improves its own growing conditions.
Consequently, a rather arid area (that is, an area with weak
precipitation inflow) may still be supportive of forest growth if its
forest cover exceeds a certain critical threshold; were forest cover
pushed below this threshold, the areawould lose all of its trees.

This is summarized in a conceptual model (see Supple-
mentary Information),

dC
dt
= F(C)=

{
r(1−C)C−x C if C >Ccrit

−x C if C <Ccrit

Here, C is the relative forest cover that grows with the saturating
rate r if C >Ccrit and dies with rate x (assuming r > x > 0). Ccrit is
the critical forest cover threshold. This model has two equilibria,
the forest state CF = 1− x/r and the savanna state CS = 0. The
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Figure 2 | State diagram of a bistable stylized forest–savanna model.
Dashed arrows show where the system state, forest cover C, would move
from a certain initial state at given aridity A. The green (light yellow) area is
the basin of attraction of the forest (savanna) state CF (CS). Solid circles
indicate the emergence or disappearance of an equilibrium.

equilibrium CF (respectively, CS) exists and is stable if CF > Ccrit
(respectively, Ccrit > 0). Assuming that Ccrit increases linearly with
aridityA, we obtain the state diagram shown in Fig. 2.

Global warming may drive up aridity, pushing it eventually
beyond the bifurcation point Acrit where the forest state vanishes.
As aridity increases, the volume of the CF state’s basin of attraction
shrinks, indicating that the forest state becomes less stable against
perturbations. Indeed, owing to this reduced basin stability, a large
perturbation such as strong deforestation might push the system to
the savanna state long before aridity reaches Acrit. Crucially, none
of this is reflected by linear stability, which judges the forest state
CF only by the stability coefficient F ′(CF) = x − r that remains
constant as aridity goes up.

This implies, first, that there is no critical slowing down. Indeed,
linear early-warning signals17 can be absent in systems with strong
nonlinearities such as this model. Second, because of their highly
local perspective, linear stability and hence the small-perturbation
convergence rate do not indicate how stable CF is against non-small
perturbations. They are unreliable proxies, in contradiction to
previous observations17,18.

Note that both effects may also emerge in such simple mechan-
ical systems as a damped driven pendulum (see Supplementary
Information). Clearly, global stability concepts are needed.

Such global stability concepts could incorporate potential energy
functions: deeper valleys would correspond to more stable states
(Fig. 1). However, energy functions may not be available for
many relevant (dissipative) systems. Furthermore, the estimation
of energy levels on the basin boundary is numerically costly in
high dimensions. An alternative approach was suggested, globally
quantifying stability (or resilience, in the original nomenclature)
in terms of the width of the basin of attraction in a particular
direction19,20. This concept has inspired a host of studies on complex
socioecological systems. Yet the measure of stability it implies ‘‘is
not so easily quantified, even in models’’18. One reason is that,
in systems with many state variables, it is impossible to identify
the single most relevant direction along which the width of the
basin should be gauged. Our basin stability offers two important
improvements: first, it follows a volume-based probabilistic
approach that is compatible with the natural uncertainty about
the strength and direction of perturbations; second, it provides a
measure of stability that is clearly defined and easily quantified even
in high-dimensional systems (seeMethods).

Basin stability’s applicability to high-dimensional systems allows
us to tackle a puzzle that has long haunted complex networks
science. Researchers in this field strive to understand how a

network’s topology serves its function and robustness21,22. Special
effort has been put into multistable dynamic networks in which
a synchronous state competes with alternative non-synchronous
or partly synchronous states11–13,23. In a power grid, for instance, all
components have to be operated at the same synchronous frequency
to achieve steady power flows and to avoid damaging resonance
effects3. In the brain, both neural communication24 and memory
processes25,26 rely vitally on the synchronous firing of neurons. This
means that, although synchronization is also associated with patho-
logical states such as Parkinsonian tremor27, the functional ability to
support synchrony is as pivotal for the brain as it is for power grids.
The problem with both kinds of network is that their real-world
topologies look completely different fromwhat the theory predicts.

The theory is as follows. If the synchronous state of a dynamic
network is to bemaintained, it must be stable against perturbations.
A groundbreaking study11 based on linearization revealed that, for
a network of identical oscillators, the stability of the synchronous
state can directly be inferred from the Laplacian, a matrix that
reflects the coupling topology (see Supplementary Information).
Indeed, for many types of oscillator, the synchronous state is stable
if the ratio of the Laplacian’s maximum and minimum non-zero
eigenvalues, R = λmax/λmin, is smaller than an oscillator-specific
stability threshold, β = α2/α1, provided the coupling strength is
chosen from the stability interval, Is= (α1/λmin,α2/λmax). The ratio
R is known as the synchronizability of a network. Networks with
smaller R are considered more synchronizable12. To determine
what particularly synchronizable networks look like, researchers13
employed the Watts–Strogatz graph generation model8 and found
that, as the model is tuned from regular lattices (model parameter
p= 0) to random graphs (p= 1), synchronizability shows a strong,
monotonical improvement (Fig. 3a).

Consequently, according to linear-stability-based synchroniz-
ability, real-world networks whose function relies on synchro-
nization should ideally look like random graphs. However, neural
networks and power grids exhibit small-world topologies that,
from the Watts–Strogatz model’s perspective, are far more regular
than random graphs8–10. Indeed, when building well-functioning
synchronizable networks, nature and civilization seem to shun
the predicted randomness. This discrepancy between theory and
observation has left networks researchwith a long-standing puzzle.

Attempting to complement the theory, we applied basin stability
to ensembles of Watts–Strogatz networks consisting of paradig-
matic Rössler oscillators, inwhich the dynamics at node i obey

ẋi=−yi−zi−K
N∑
j=1

Lijxj (1)

ẏi= xi+ayi (2)

żi= b+zi(xi− c) (3)

with coupling constant K , Laplacian matrix L, a = b = 0.2, and
c = 7.0. Every such network has a synchronous state in which
all nodes follow the same trajectory. A network’s synchronous
state is stable if its synchronizability R < α2/α1 = 37.85 and
K ∈ Is = (α1/λmin,α2/λmax), where α1 = 0.1232 and α2 = 4.663.
However, the level of R does not quantify how stable the
synchronous state is against perturbations. To address this yet
unasked question, for each network we estimated the synchronous
state’s basin stability SB for several K ∈ Is and computed the mean
S̄B = mean〈SB(K )〉K∈Is (see Methods). Finally, we averaged S̄B
over the ensemble to obtain the expected basin stability 〈S̄B〉.
We found that, in sharp contrast to synchronizability, expected
basin stability declines exponentially fast as networks become more
random (Fig. 3a,b; for a qualitative explanation, see Supplementary
Information). Therefore, the synchronous state ismuchmore stable
in networks that are more regular.
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Figure 3 | Synchronizability and basin stability in Watts–Strogatz
networks of chaotic oscillators. a, Expected synchronizability 〈R〉 versus
the Watts–Strogatz model’s parameter p. The scale of the y axis was
reversed to indicate improvement on increase in p. b, Expected basin
stability 〈S̄B〉 versus p. The grey shading indicates± one standard
deviation. The dashed line shows an exponential curve fitted to the
ensemble results for p≥0.15. Solid lines are guides to the eye. The plots
shown were obtained for N= 100 oscillators of Rössler type, each having
on average k=8 neighbours. Choices of larger N and different k produce
results that are qualitatively the same. See Methods and Supplementary
Information for details and a qualitative explanation of the main
characteristics.

This adds a crucial piece to the puzzle and, we conjecture,
makes its solution emerge (Fig. 4): in synchronizing networks, the
functional need for the synchronous state to be as stable as possible
promotes topological regularity. Thus, during network evolution,
the optimization of synchronizability and the simultaneous opti-
mization of basin stability have acted as two opposing forces. Their
contest ended in a topological tradeoff: small-worldness.

Here, we have introduced basin stability, a newuniversal concept
of stability. We see many important applications, notably cell
regulatory networks, whose carcinogenic gene expression profiles
have been related to cancer attractors in a high-dimensional
multistable state space28. Like linear stability, basin stability is a
property of a deterministic system and contains no information
on the external perturbations that may affect it. Hence, it may
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Figure 4 | Topological comparison of ensemble results with real-world
networks. Circles represent the results for Watts–Strogatz networks with
N= 100, k= 10 and rewiring probability p∈ {0.05,0.1,0.15,...,1.0} (p
increasing from left to right). Circle area is proportional to the expected
basin stability 〈S̄B〉, and colour indicates the expected synchronizability 〈R〉.
Squares represent real-world networks reported to exhibit a small-world
topology (Supplementary Table S1). We chose ξL and ξC so that networks of
different sizes can be compared with respect to average shortest path L and
clustering coefficient C, quantities that characterize small-worldness8.
(ξL,ξC)= (0,0) labels a regular network whereas (ξL,ξC)= (1,1) labels a
random network. Small-world networks reside in the top-left quadrant. See
Methods and Supplementary Information.

often be promising to conceptually combine basin stability with
a non-uniform distribution of perturbations. Basin stability could
also be applied to stochastic systems by incorporating a suitable
probabilistic notion of basins.

Methods
Estimationof basin stability inWatts–Strogatz networks ofRössler oscillators. A
Watts–Strogatz network is constructed as follows8: starting from a one-dimensional
ring of N nodes in which every node is connected to its k nearest neighbours,
each edge is rewired independently with probability p by re-choosing one
of its endpoints randomly. A Watts–Strogatz network generated with p= 0
(p= 1) has a regular (random) topology. An intermediate value of p yields a
small-world topology.

In a given network, the dynamics at node i (i= 1,...,N ) are governed by the
coupled Rössler equations (1)–(3). For K ∈ Is := (0.1232/λmin,4.663/λmax), we
want to estimate the volume of the synchronous state’s basin of attraction B. High
dimensionality poses challenges. If B were a bounded convex set, its volume could
be estimated in O(n4) time steps with today’s best algorithm29, where n= 3N is
the dimension of state space. We have N ≥ 100, so this would be numerically very
expensive. In any case, B is not convex in Rössler networks (see Supplementary
Information). Thus, we retreat to something feasible: we estimate the volume of B
in a relative sense,measuring basin stability as SB ∩Q=Vol(B∩Q)/Vol(Q)∈[0,1],
where Q is a subset of state space that has finite volume.

More specifically, we integrate the system equations for T initial conditions
drawn uniformly at random from Q. We count the numberM of initial conditions
that arrive at the synchronous state (the other possible attractor being infinity) and
estimate SB ∩Q asM/T . Observing that this is a repeated Bernoulli experiment, we
infer that the estimate carries a standard error of

e :=
√
SB ∩Q(1−SB ∩Q)

√
T

At T =500, for example, e<0.023 in absolute terms.
In relative terms, e < SB ∩Q/10 for SB ∩Q > 1/6. Q should be chosen

such that values of SB ∩Q typically surpass this level. Our choice underlying the
results presented above is Q= qN with q= [−15,15]× [−15,15]× [−5,35].
Note that the Rössler attractor is included in q. We also studied other choices
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of Q—for instance ([−8,8]×[−8,8]×[−8,8])N—yet observed no qualitative
difference in the outcomes. Therefore, we suppress the subscript Q when
stating SB in Fig. 3.

For each network in the ensemble, we estimate basin stability SB for ten
different equally spaced valuesK ∈ Is and average to obtainmean basin stability S̄B .

The results are not qualitatively different for networks produced
by a two-dimensional Watts–Strogatz model and another model that
varies the link length distribution30. Details on this are provided in the
Supplementary Information.

Topological comparison of small-world networks of different sizes. The axes
of Fig. 4 were chosen so that different real-world networks can be compared,
without the distorting effects of network size, with respect to average shortest path
L and clustering coefficient C . L and C have been widely used to characterize
small-worldness8. We plot ξL against ξC , where ξX = 1− log(X/XR)/log(XL/XR)
with X = L or C . LR,CR (or LL,CL) are the values of the respective quantities
in random networks (or regular lattices) of the same size. ξX counts how many
orders of magnitude X is away from XL in relation to the count of orders
of magnitude between XL and XR. This way (ξL,ξC )= (0,0) labels a regular
network whereas (ξL,ξC )= (1,1) labels a random network. Small-world networks
have8 L≈ LR and C� CR and therefore reside in the top-left quadrant. See
Supplementary Information.
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How Basin Stability Complements the Linear-
Stability Paradigm

P. J. Menck, J. Heitzig, N. Marwan & J. Kurths

Here we present supplementary material that accompanies our paper How Basin Stability

Complements the Linear-Stability Paradigm. The first section of the material contains a

motivation of the conceptual model of Amazonian vegetation we use and a discussion of

the mechanical damped driven pendulum. Both systems demonstrate that linear stability

concepts are unreliable proxies of global stability. The second section contains details on

our analysis of basin stability in synchronizing networks.

1 Linear Stability Fails at Indicating Global Stability

1.1 Conceptual Amazonian Vegetation Model

To motivate the simple growth equation that we use in the main text, we review the equi-

librium model of Amazonian vegetation presented in ref. 5 . Consider a region of the

Amazon basin that is subdivided into cells having different dry season (d.s.) precipita-

tion requirements for forest establishment. Assume that the frequency of cells whose d.s.

precipitation requirement is p follows a normal distribution,

f(p) =
1

σ
√
2π

e−
(p−µ)2

2σ2

with mean µ and standard deviation σ. Then the relative forest cover C in the region is

related to the region’s average d.s. precipitation P through

C(P ) =

∫ P

0

f(p)dp. (S1)

How basin stability complements the linear-stability paradigm
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Forest cover increases overall precipitation because trees take up water stored in the soil and

release it to the atmosphere via evapotranspiration. The total amount of d.s. precipitation

in the region can therefore be expressed as

P (C) = Pin + C · Φ, (S2)

where Pin is the precipitation inflow from other regions and Φ is the contribution of one

unit of forest cover to overall precipitation. An arid region is characterized by low Pin.

Now imagine that the region has a certain level of forest cover Cbefore before global

climatic climate change alters Pin. How will C change? A pictorial answer is given in

Fig. S1.
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1

Supplementary Figure S1: Equilibrium model of Amazonian vegetation. The solid
green line represents equilibrium forest cover C at d.s. precipitation P . The dashed black
line is the overall d.s. precipitation P as a function of C. Step-stair sequences are shown
for two different initial values of forest cover. Reproduced from ref. 5.
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The solid green line represents equilibrium forest cover C at d.s. precipitation P , cf.

eq. (S1). The dashed black line is the overall d.s. precipitation P at forest cover C, cf.

eq. (S2). If Cbefore = C1, forest cover is above the critical threshold Ccrit, so that P can sup-

port even more trees. Hence C grows, therefore P increases, upon which C grows further,

and so on. Finally, due to this positive feedback loop, C is propelled towards 1.0. If, on

the contrary, Cbefore = C2, forest cover is below Ccrit. Forest cover at this level cannot be

supported by P , starts to die back, again triggers a positive feedback loop, and eventually

vanishes completely.

We describe the growth dynamics using the Levins model31, a widely accepted basic vege-

tation model32, to which we add a non-smooth switch in the growth term (corresponding

to the limit σ � Φ):

dC

dt
= F (C) =

 r(1− C)C − xC if C > Ccrit,

−xC if C < Ccrit.

According to this model, forest cover C grows with the saturating rate r if C > Ccrit and

dies with rate x (assuming r > x > 0). This model has two equilibria, the forest state

CF = 1 − x
r

and the savanna state CS = 0. The equilibrium CF (resp. CS) exists and is

stable if CF > Ccrit (resp. Ccrit > 0). So, as in the equilibrium model reviewed above,

C converges to a non-zero constant value if C > Ccrit and vanishes completely otherwise.

When increasing aridity drives up Ccrit: i) CF’s basin of attraction of shrinks, implying

that CF becomes less stable against perturbations such as strong deforestation (cf. Fig. 2).

ii) CF vanishes at Ccrit = CF.

Our model is conceptual. We do not intend it to serve as a description of reality.

Rather, we use it as a reality-inspired aide to theory to illustrate the difference between

the realm of small perturbations and the realm of non-small perturbations. This difference

manifests itself in two phenomena:
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i) As the linear stability coefficient of the forest state, F ′(CF) = x − r, is a constant

independent of Ccrit, critical slowing down does not take place. This is reflected by a zero

recovery exponent33. Indeed, critical slowing down may be absent in systems in which

strong non-linearities such as switches exist.

ii) More important to us, because of their local nature, linear stability and the small-

perturbation convergence rate do not sense that CF’s basin of attraction of shrinks as Ccrit

goes up. The authors of ref. 34write that “transitions caused by a sudden large disturbance

without a preceding gradual loss of [stability against non-small perturbations]a will not be

announced by slowing down.” On top of that, our model shows that slowing down may be

absent even if such a gradual loss of stability is going on.

We conclude from this that linear stability and the small-perturbation convergence rate

are unreliable proxies of how stable a state is against non-small perturbations. Instead of

employing such local proxies, one should study global stability concepts like the one we

suggest: basin stability.

The same conclusions can be drawn from the study of a basic damped driven pendulum

(see next subsection).

aThe original term they use is “resilience”, refering to Holling’s concept discussed in the main text.
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1.2 Damped Driven Pendulum

Consider a classical damped pendulum driven by a constant angular acceleration T . As-

sume its dynamics to obey

φ̇ = ω

ω̇ = −αω + T −K sinφ,

where α > 0 is the dissipation coefficient and K = g/`, with the gravitational acceleration

g and the pendulum’s length `.

In the following, we investigate the pendulum’s solution space by varying T ≥ 0 at

fixed K, α (T ≤ 0 reveals the mirror image). For 0 ≤ T ≤ K, the pendulum has two fixed

points xi = (φi, ωi), i = 1, 2, with coordinates

φ1,2 = arcsin

(
T

K

)
,

ω1,2 = 0

where we take φ1 to be the solution of arcsin inside [0, π/2] and φ2 = π−φ1. The eigenvalues

of the Jacobian matrix at (φi, ωi) read

ξ±i = −α
2
±
√
α2 − 4K cosφi

2
(S3)

and the maximum Lyapunov exponent of fixed point i is λi = Re ξ+i . For 0 < T < K,

λ1 < 0 and λ2 > 0, because cosφ1 = − cosφ2 > 0. Hence the first fixed point x1 is a

stable equilibrium and the second fixed point x2 is an unstable saddle. At T = K, a fold

bifurcation occurs in which the two fixed points collide and disappear.

For T > K, the angular acceleration due to gravity cannot balance T and the pendu-
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lum converges to a stable limit cycle in which ω oscillates around T/α. This limit cycle

is also stable for a certain range Tmult ≤ T ≤ K. For these values of T , the pendulum is

multistable. An example multistable state space is depicted in Supplementary Fig. S2.
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Supplementary Figure S2: Phase Space of the Damped Driven Pendulum. The
filled (open) circle marks the stable equilibrium point x1 (the unstable saddle point x2).
x1’s basin of attraction is indicated by the green area. From points in the non-coloured
area, the pendulum converges to the limit cycle. We use α = 0.1, K = 1, and T = 0.5.

For concreteness, we now choose α = 0.1 and K = 1 and increase T from 0. First

we look at linear stability. Supplementary Fig. S3 shows how the maximum Lyapunov
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exponent λ1 of the stable equilibrium x1 depends on T : Except very close to T = 1,

λ1 is constant and equal to −α/2. Only at T = 0.999997, when the square root term

contributing to the eigenvalues ξ±1 becomes real, does λ1 start moving towards 0, where it

reaches at T = 1.

Is critical slowing down, i.e., the decline of the small-perturbation convergence rate

before the bifurcation, detectable experimentally? The maximum perturbation in positive

φ-direction that the stable equilibrium x1 can withstand is φ2 − φ1 (cf. Supplementary

Fig. S2), which at T = 0.999997 amounts to approximately 5 · 10−3 rad = 0.28◦. For a

pendulum of length ` = 10 cm, this corresponds to a displacement ∆ = 0.5 mm. Therefore,

only if fluctuations induced by the environment are significantly less than ∆ will critical

slowing down be detectable in an experiment.

If critical slowing down is detectable, it occurs very late as T increases from 0 to

1. Hence critical slowing down appears not to be a reliable early-warning signal for the

pendulum’s critical transition.
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Supplementary Figure S3: Linear Stability of the Damped Driven Pendulum. a,b:
Max. Lyapunov exp. λ1 of the stable equilibrium versus T . b zooms in close to T = 1.
We use α = 0.1, K = 1.
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Now we look at basin stability. To estimate x1’s basin stability SB, we randomly draw

1000 initial conditions from [0, 2π] × [−20, 20], integrate the system equations, and count

in how many cases x1 (instead of the stable limit cycle) is reached. The result is shown in

Supplementary Fig. S4. The limit cycle becomes stable at Tmult ≈ 0.13. For T ∈ [Tmult, 1),

the pendulum is multistable. As T increases in this interval, basin stability SB declines

rapidly towards zero, where it reaches at T = 1.

None of this is indicated by the maximum Lyapunov exponent (cf. Supplementary

Fig. S3a). Hence linear stability seems not to be a good proxy for the degree of stability

against non-small perturbations.
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Supplementary Figure S4: Basin Stability of the Damped Driven Pendulum. Basin
stability SB of the stable equilibrium x1 versus T . We use α = 0.1, K = 1.
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2 Basin Stability in Synchronizing Networks

This section is ordered as follows. In the first subsection, we review the seminal study11 by

Pecora and Carroll on networks of identical oscillators that proposed the Master Stability

Function (MSF) formalism and motivated the definition of synchronizability. In the second

subsection, we elaborate on the computation of basin stability in Rössler networks. In the

third subsection, we report properties of the real-world networks referred to in Fig. 4. The

fourth subsection contains remarks about the non-convexity of the synchronous state’s

basin of attraction in Rössler networks.

2.1 Master Stability Function Formalism

Consider a system ofN identical oscillators which are coupled through a connected network.

Its dynamics are governed by the equations

ṙi = F(ri) +K
∑
j

Aij[H(rj)−H(ri)] = F(ri)−K
∑
j

LijH(rj),

where ri is the m-dimensional state vector describing the processes at node i. A is the

adjacency matrix, with Aij = 1 if there is an edge between nodes i and j and Aij = 0

otherwise. Lij = δij
∑

k Aik − Aij is the Laplacian matrix with δij = 1 if i = j and

δij = 0 otherwise. Finally, K denotes the overall coupling constant and H(r) is the

coupling function prescribing through which of their m components the connected nodes

interact. F determines the evolution of each individual oscillator in the case of no coupling

(K = 0). Because Lij has zero row sum by definition, there always exists a synchronous

stateMs = {r1 = r2 = . . . = rN = s(t)|t ∈ R} in the Nm-dimensional state space in which

all individual oscillators follow the same trajectory s(t). Technically, Ms is an invariant

set of states rather than a state. However, for notational simplicity, we keep on calling it

the synchronous state.
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IsMs stable? Based on linear stability, this problem was elegantly shown11 to break up

into two parts: Firstly, F,H define a Master Stability Function MSFF,H that is independent

of the network. Secondly, K and the network define a set of numbers at which MSFF,H

has to be evaluated to find out whether Ms is stable. Indeed, Ms is stable if K and the

eigenvalues λ1 = 0 < λ2 ≤ . . . ≤ λN of the positive semidefinite symmetric matrix L satisfy

MSFF,H(Kλi) < 0 for all i = 2, . . . , N . This condition is equivalent to demanding that

all transverse eigenmodes of Ms have a negative Lyapunov exponent. Many choices of F

and H yield a function MSFF,H that is negative only in an interval (α1, α2), so thatMs is

stable if α1 < Kλi < α2 for all i = 2, . . . , N . This can only be fulfilled if λN/λ2 < α2/α1, in

which case the synchronous state is stable, provided K is chosen from the stability interval

Is = (α1/λ2, α2/λN). In the main text, λ2 =: λmin, λN =: λmax, and β = α2/α1 is referred

to as the stability threshold. Note that λ2 > 0 if the network is connected as we have

assumed here.
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2.2 Basin Stability in Rössler networks

We study ensembles of Watts-Strogatz (WS) networks consisting of N Rössler oscillators

that are coupled through their x-components. In each network, the dynamics of the oscil-

lator at node i is determined by the equations

ẋi = −yi − zi −K
N∑
j=1

Lijxj

ẏi = xi + ayi

żi = b+ zi(xi − c)

with a = b = 0.2 and c = 7.0. L is the network’s Laplacian matrix and K is the overall

coupling constant. We are interested in the stability of the synchronous state in which all

oscillators follow the same trajectory on the Rössler attractor. According to the Master

Stability Function formalism (see previous subsection), this state is stable if the network’s

synchronizability R = λmax/λmin is lower than the threshold α2/α1, provided the coupling

K is selected from the stability interval Is := (α1/λmin, α2/λmax) (for x-coupled Rössler

oscillators, α1 = 0.1232 and α2 = 4.663).

Fig. 3a displays that for ensemble networks with too small WS rewiring probability p

the expected synchronizability 〈R〉 has not yet crossed α2/α1 so that the synchronous state

is not stable (note the reversed y-axis in the Figure). But the expected synchronizability

improves rapidly, soon passes the stability threshold, and then improves even further.

However, the level of synchronizability just qualifies the synchronous state as stable or

unstable. To quantify stability, we label by SB the basin stability of the synchronous state.

Being a relative measure of the basin’s volume (see Methods), SB is a number between 0

and 1. For each ensemble network we compute the mean basin stability S̄B by averaging

over SB(K) for several values of K within the stability interval. Strikingly, Figure 3b

reveals that the expected mean basin stability 〈S̄B〉 shows a behaviour opposite to that of
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the expected synchronizability: After shooting up initially, expected mean basin stability

〈S̄B〉 declines exponentially fast as the rewiring probability p increases. (This true for all

choices of N and k that we analyzed, see Supplementary Fig.S5).
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Supplementary Figure S5: Basin Stability in Rössler networks. Expected basin sta-
bility 〈S̄B〉 versus p. Solid lines are guides to the eye. a: N = 100, b: N=200.
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2.2.1 Qualitative Explanation

Why is this? Supplementary Fig. S6a displays that the expected basin stability 〈SB(K)〉

of a network at any fixed coupling K increases strongly as K grows and that it hardly

depends on p. Hence a network’s mean basin stability S̄B should be determined primarily

by the location of its stability interval Is. Indeed, for increasing p the expected stability

interval 〈Is〉 of a network significantly shifts to the left and simultaneously broadens (see

Supplementary Fig. S6b). This qualitatively explains the rapidly decreasing behaviour of

the expected mean basin stability shown in Fig. 3b. It also implies that the mean basin

stability S̄B of a Rössler network mainly depends on the absolute values of λmin and λmax

(which determine Is), as opposed to their ratio which is central in synchronizability studies.
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Supplementary Figure S6: Explanatory characteristics. a: expected basin stability
〈SB(K)〉 at coupling K, measured in the interior of the expected stability interval for
p = 0.2, 0.5, 0.8. Solid lines are guides to the eye. b: expected stability interval 〈Is〉 at
rewiring probability p. The red solid line represents its left bound α1/〈λmin〉, the green
dashed line its right bound α2/〈λmax〉.
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2.2.2 Example Estimation of Mean Basin Stability S̄B

For the sake of reproducibility, here we report the estimation of mean basin stability S̄B

for an example network from the ensemble. Its edge list reads:

0-1 0-2 0-3 4-61 2-91 1-3 1-4 1-5 3-20 2-4 2-5 2-6 3-4 3-5 3-6 3-7

4-5 4-6 7-73 4-8 5-6 5-7 5-8 5-9 7-88 8-45 6-9 6-10 7-8 7-9 7-10 7-11

8-9 8-10 8-11 8-12 9-10 9-11 9-12 9-13 10-11 10-12 10-13 10-14 12-93 11-13 14-3 11-15

12-13 12-14 12-15 12-16 14-49 13-15 13-16 13-17 14-15 14-16 14-17 14-18 15-16 15-17 15-18 19-65

16-17 16-18 16-19 20-94 17-18 17-19 17-20 17-21 18-19 20-65 18-21 18-22 19-20 19-21 19-22 19-23

20-21 22-16 20-23 20-24 21-22 21-23 24-0 21-25 22-23 22-24 22-25 22-26 24-47 23-25 23-26 27-75

24-25 26-34 27-17 28-90 25-26 25-27 28-8 25-29 26-27 26-28 26-29 26-30 27-28 27-29 27-30 27-31

28-29 30-46 31-36 28-32 30-70 29-31 29-32 29-33 30-31 30-32 30-33 30-34 31-32 31-33 31-34 35-52

32-33 32-34 35-6 36-48 33-34 33-35 33-36 33-37 34-35 34-36 34-37 34-38 35-36 35-37 35-38 35-39

36-37 36-38 39-73 36-40 37-38 37-39 40-84 37-41 38-39 38-40 38-41 42-93 39-40 41-46 39-42 43-13

40-41 40-42 43-86 40-44 41-42 41-43 41-44 45-67 42-43 42-44 45-77 46-95 43-44 43-45 43-46 43-47

44-45 44-46 44-47 44-48 45-46 47-60 45-48 49-75 46-47 46-48 46-49 46-50 47-48 47-49 47-50 51-96

48-49 48-50 48-51 52-34 49-50 49-51 49-52 49-53 50-51 50-52 50-53 50-54 51-52 51-53 51-54 51-55

53-28 54-21 52-55 56-83 54-1 53-55 56-88 57-88 55-79 54-56 54-57 58-78 56-85 55-57 55-58 55-59

56-57 56-58 56-59 56-60 57-58 57-59 60-45 57-61 58-59 58-60 61-36 62-75 60-71 59-61 59-62 63-12

61-33 60-62 60-63 64-7 61-62 61-63 61-64 61-65 62-63 62-64 62-65 66-77 63-64 63-65 66-74 67-47

64-65 64-66 67-95 68-19 65-66 65-67 65-68 65-69 66-67 66-68 66-69 66-70 67-68 67-69 67-70 67-71

68-69 68-70 68-71 68-72 69-70 69-71 69-72 73-14 70-71 70-72 73-18 74-16 71-72 71-73 71-74 71-75

72-73 72-74 72-75 72-76 74-47 73-75 73-76 77-56 75-10 74-76 74-77 74-78 75-76 75-77 75-78 75-79

77-10 76-78 79-97 76-80 77-78 77-79 77-80 77-81 78-79 78-80 81-93 78-82 79-80 79-81 79-82 79-83

80-81 80-82 83-30 80-84 81-82 81-83 84-14 81-85 82-83 82-84 82-85 86-52 84-50 83-85 83-86 83-87

85-51 86-72 84-87 84-88 85-86 85-87 85-88 85-89 86-87 86-88 86-89 86-90 87-88 87-89 87-90 91-12

88-89 88-90 88-91 88-92 90-97 91-25 89-92 89-93 91-10 92-65 90-93 90-94 92-54 91-93 94-15 91-95

92-93 92-94 92-95 92-96 93-94 93-95 93-96 93-97 95-18 94-96 94-97 94-98 95-96 95-97 95-98 99-59

96-97 96-98 96-99 0-34 98-60 97-99 97-0 97-1 98-99 98-0 98-1 98-2 99-0 99-1 99-2 99-3

This network consists of N = 100 nodes and E = 400 edges (and was generated using the

Watts-Strogatz model with rewiring probability p = 0.2). The minimum and maximum

non-zero eigenvalues of its Laplacian matrix are λmin = 1.236 and λmax = 13.87125, respec-

tively. Hence its stability interval Is = (0.010, 0.336). The synchronous state is stable for

K ∈ Is. We measure its basin stability at 11 different equally spaced values of K in the

interior of Is, namely 0.119, 0.139, 0.159, 0.179, 0.198, 0.218, 0.238, 0.258, 0.278, 0.297,

0.317, and obtain the corresponding sequence of SB-values: 0.226, 0.274, 0.330, 0.346,

0.472, 0.496, 0.594, 0.628, 0.656, 0.694, 0.690. To estimate the mean basin stability S̄B of

this network, we compute the average of these values and obtain S̄B ≈ 0.49.
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2.2.3 2-dimensional Watts-Strogatz Networks

In the main text and in the preceding sections of this supplementary material, we use a

1-dimensional ring as the initial configuration of the Watts-Strogatz algorithm. Here, we

use the 2-dimensional lattice depicted in Supplementary Fig. S7.

Figure S7: Initial grid for 2-dimensional Watts-Strogatz (WS) network genera-
tion. Each node is connected to its four nearest neighbours and the four diagonal ones
among its next-nearest neighbours. So each node has 8 links.

We choose N = 20 · 20 = 400 as the network size and, as before, place a Rössler

oscillator at each node. Note that basin stability calculations on this lattice size approach

the limits of what is computationally feasible today. For each network in the ensemble we

estimate the basin stability SB(K) for several K ∈ Is and compute their mean S̄B. Here,

we use a slightly smaller reference subset, Q = qN with q = [−15, 15]× [−15, 15]× [−4, 35],

than above as otherwise the values of SB are too small to be accuractely measurable with

T = 500 integrations (cf. Methods). Note that the Rössler attractor is still included in q.

Finally, we average S̄B over the ensemble to obtain 〈S̄B〉.

The results are shown in Supplementary Fig. S8. There is no qualitative difference to

Fig. 3: Whereas synchronizability improves as networks become more random, expected
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basin stability is larger in networks that are more regular and falls off exponentially with

increasing randomness.

Supplementary Fig. S9 shows how the 2-dimensional results compare topologically to

synchronizing networks from the real-world (cf. Fig. 4). Again, there is no qualitative dif-

ference. Whereas the need for good synchronizability drives networks towards randomness,

the need for large basin stability drives them towards regularity.
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Figure S8: Synchronizability and basin stability in 2-dimensional Watts-Strogatz
(WS) networks of chaotic oscillators. a: Expected synchronizability 〈R〉 versus the
WS model’s parameter p. The scale of the y-axis was reversed to indicate improvement
upon increase in p. b: Expected basin stability 〈S̄B〉 versus p. The grey shade indicates
± one standard deviation. The dashed line shows an exponential fitted to the ensemble
results for p ≥ 0.05. Solid lines are guides to the eye. The plots shown were obtained for
N = 400 oscillators of Rössler type, each having on average k = 8 neighbours.
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Figure S9: Topological comparison of results for the 2-dimensional ensemble with
real-world networks. A circle represents the results for 2D Watts-Strogatz networks with
N = 400, k = 8 and rewiring probability p ∈ {0.05, 0.1, 0.15, . . . , 1.0} (p increasing from
left to right). A circle’s area is proportional to the expected basin stability 〈S̄B〉. A circle’s
colour indicates the expected synchronizability 〈R〉. Squares represent real-world networks
reported to display a small-world topology (Supplementary Table 1). We chose ξL and
ξC so that networks of different sizes can be compared w.r.t. average shortest path L and
clustering coefficient C, quantities that characterize small-worldness8. (ξL, ξC) = (0, 0)
labels a regular network whereas (ξL, ξC) = (1, 1) labels a random network. Small-world
networks reside in the top left quadrant. See next section for details on the ξX , X = L or
C.
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2.2.4 Small-World Networks with Different Link Length Distributions

Here we study small-world networks with different link length distributions. The networks

are created as follows: We start with a 2-dimensional lattice in which every node is con-

nected to its 4 nearest neighbours. Then we add short-cuts so that, in the end, the average

number of links per node is 8. For short-cut addition, we use the following procedure30: A

pair of nodes, (i, j) is chosen randomly. Then a new link connecting them is added to the

network with probability

P (r) ∝ r−α,

where r is the Manhattan distance between i and j, i.e., the distance between them on the

original 2-dimensional lattice with no short-cuts.

In networks created like this, we expect the length of a typical short-cut to decline

when α increases. How do basin stability and synchronizability depend on α?

To investigate this, we choose the network size to be N = 20 · 20 = 400 and, as before,

place a Rössler oscillator at each node. Then for every network, we compute S̄B. Here, we

use a slightly smaller reference subset, Q = qN with q = [−15, 15] × [−15, 15] × [−3, 35],

than above as otherwise the values of SB are too small to be accuractely measurable with

T = 500 integrations (cf. Methods). Note that the Rössler attractor is still included in q.

Finally, we average S̄B over the ensemble to obtain 〈S̄B〉.

Supplementary Fig. S10a shows that expected synchronizability 〈R〉 declines as α in-

creases. This means that, from the linear stability perspective, an optimal link length

distribution should fall off slowly or not at all (corresponding to rather low α).

The perspective of basin stability, again, disagrees with this. In Supplementary Fig. S10b,

we see that 〈S̄B〉 evolves in an opposite way to expected synchronizability in a large portion

of the parameter interval: 〈S̄B〉 grows as α increases. Finally, as α is tuned up further, basin

stability reaches a maximum and then declines rapidly towards zero as synchronizability
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approaches the stability threshold.

We think that these results do not contain considerably more information than Fig. 3

and Supplementary Fig. S8: For large α as well as for small p, networks have an intense

local structure that is reduced as α decreases and p increases. This may be the common

reason behind the phenomena we observe.
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Figure S10: Synchronizability and basin stability in networks of chaotic oscilla-
tors with different link length distribution. a: Expected synchronizability 〈R〉 versus
the link length distributions’s parameter α. The scale of the y-axis was reversed. The grey
shade indicates ± one standard deviation. b: Expected basin stability 〈S̄B〉 versus α. The
grey shade indicates ± one standard deviation. Solid lines are guides to the eye. The plots
shown were obtained for N = 400 oscillators of Rössler type, each having on average k = 8
neighbours.
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2.3 Properties of Studied Real-World Networks

Many synchronizing real-world networks were reported to display a small-world topology,

among them neural networks and power grids8,9. We supply an overview of typical network

properties for some such networks in Supplementary Table S1. Therein, L measures the

average shortest path length between two vertices in the network and C = 1
N

∑
Ci is the

average of the nodal clustering coefficients

Ci =

∑
j,k∈N(i)Ajk

|N(i)|2 − |N(i)|
.

In this formula, A is the adjacency matrix, N(i) is the set of nodes to which node i is

linked, and |N(i)| =
∑

j∈N(i) 1 its cardinality35.

A network is said to display a small-world topology if C � CR and L ≈ LR, where

CR and LR are the average values of C and L in a random network that has the same

number N of nodes and the same number E of edges8. To estimate CR and LR, we apply

the Watts-Strogatz (WS) algorithm with rewiring probability p = 1 to regular ring lattices

of given N and E and average over many realizations. The initial regular ring lattices are

created in two steps. First, connect every node to its k nearest neighbours, where k is

the largest even integer smaller than βE/N with β = 2 (β = 1) for undirected (directed)

networks. Second, add the remaining E − kN/β edges randomly between nodes that are

k/2 + 1 steps apart on the ring9. In Supplementary Table S1, beside CR and LR we report

the averages CL and LL for lattice-like networks.

From the WS model’s perspective, C and L assume their largest values in regular

lattices and their lowest values in random graphs. Hence, small-world networks are rather

similar to regular lattices w.r.t. C, yet at the same time rather similar to random graphs

w.r.t. L. To quantify these similarities independently of the network size (as given by
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N,E), we introduce

ξX = − log(X/XL)

log(XL/XR)
= 1− log(X/XR)

log(XL/XR)

with X = L or C. ξX counts how many of orders of magnitude X is away from XL in

relation to the number of orders of magnitude between XL and XR. Note that logC can be

interpreted as a measure of dimensionality36. Lattices have ξC = ξL = 0, whereas random

graphs have ξL = ξC = 1. From the above, small-world networks should display ξC not too

far from 0 and ξL not too far from 1 (and indeed the real networks studied here do so, see

Fig. 4). We use ξC and ξL to topologically compare the networks listed in Supplementary

Table S1 to the ensemble results on basin stability and synchronizability reported in the

main text.

# Network N E C L CR LR CL LL

1 Macaque Visual Cortex 30 311 0.53 1.73 0.36 1.66 0.66 1.93
2 Macaque Cortex 71 746 0.46 2.38 0.15 2.03 0.66 3.85
3 Cat Cortex 52 820 0.55 1.81 0.31 1.70 0.69 2.14
4 C. Elegans Neural Network 297 2345 0.18 3.99 0.027 2.98 0.64 19.25
5 Power Grid of Western US 4941 6594 0.08 18.99 0.00035 10.19 0.39 925.7
6 Power Grid of Central Europe 4335 5551 0.07 28.73 0.00020 10.73 0.35 846.8
7 Power Grid of Northern Europe 524 640 0.04 14.49 0.0030 8.38 0.29 107.6
8 Power Grid of the UK 393 484 0.04 12.54 0.0034 7.78 0.30 80.3

Supplementary Table S1: Overview of properties of some real-world networks. N
specifies the number of nodes and E the number of edges in the network. Furthermore, L
is the average shortest path length and C the clustering coefficient. These two quantities
have been widely used to characterize small-worldness8. XR (or XL) represent average
values of X computed in random networks (or lattices) of the same N,E, where X = L,C.
For networks 1 to 3, the values of L and C were taken from ref.9.
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2.4 Non-Convexity of the Basin in Rössler-networks

Convexity of the basin B of the synchronous state in a network of Rössler oscillators would

make the computation of its volume simpler. However, we clearly find that B is not convex.

This follows from the non-convexity of the chaotic attractor’s basin B1 of a single Rössler

oscillator, as obvious from the two-dimensional details displayed in Supplementary Fig. S11.

BN1 := {r1 = . . . = rN = r | r ∈ B1} is a subset of the synchronous state’s basin BN for

every N ≥ 1. Consequently, BN is not convex either. Hence the powerful tools for volume

estimation of convex bodies are not applicable here.
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Supplementary Figure S11: Two-dimensional details of the Rössler attractor’s
basin. a: shows the xy-detail. A point (x, y) refers to the initial state (x, y, 0). b:
shows the xz-detail. A point (x, z) refers to the initial state (x, 0, z). In both panels the
white region indicates the Rössler attractor’s basin of attraction. The green shape depicts
a two-dimensional projection of the Rössler attractor.
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