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Abstract. Based on fractal properties and spatial auto-correlation, the measures
of complexity lacunarity, Moran’s I and Geary’s C index are defined for 3D
image analysis. Their abilities to investigate translational invariance, characteris-
tic length scales, spatial correlation and shapes of 3D micro-structures are demon-
strated on proto-typical examples. Finally, using these measures of complexity, 3D
images of trabecular bone are analysed. The main findings are that the complexity
of the trabecular structure decreases and the plate-like shapes of the trabeculae
change to mainly rod-like shapes during bone loss. These results and the proposed
measures could have a great impact for medicine and for space exploration.

1 Introduction

In the last years, it has been shown that the structure of trabecular bone is very important
for the stability and strength of bone [4,7,9,10,12,17,18]. Together with loss of bone mass,
structural changes in the trabecular bone occur during the development of osteopenia and
osteoporosis as well as under microgravity conditions [23], and can lead to an increased risk of
bone fracture. Therefore, it is important not only to determine the bone mineral density but
also the changes of the bone micro-architecture. Recent developments in computer tomography
(CT) imaging allows for the study of high-resolution 3D images of bone. In particular, due to
the recent introduction of µCT devices, images of the bone micro-architecture with resolution
up to 20µm are available.
The bone mineral density (BMD) is the standard predictor for the bone state, strength

and fracture risk. Recent studies investigating trabecular bone structure have used different
approaches to describe the changes in the complex micro-architecture in order to find addi-
tional descriptors for the bone state. The gold standard for the description of the trabecular
bone structure is histomorphometry [13]. By using histomorphometry, good correlation be-
tween bone strength and, e. g., the mean trabecular plate separation was found [21]. Other
approaches use techniques based on nonlinear data analysis, like the study of fractal properties
[5,16] or symbolic encoding [19,20]. They have found clear relations between the complexity
of the trabecular bone and the osteoporotic stage. Several attempts in numerical modelling of
the trabecular bone and applications of finite element analysis also confirmed the importance
of the trabecular bone structure for the bone strength [8,15,22].
Here we present two approaches of measures of complexity for the investigation of 3D

structures, in particular 3D µCT images of trabecular bone. The first approach is based on
fractal properties and uses a measure called lacunarity. The second approach studies spatial
correlations and uses the two measures Moran’s I index and Geary’s C index, which actually
came from the analysis of population dynamics.
These measures of complexity are applied on µCT images of biopsies of human proximal

tibia.
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2 Lacunarity

Lacunarity is a measure introduced to distinguish between fractal structures of different appear-
ance, but same fractal dimension. The appearance of fractal patterns can be rather different
even for the same fractal dimension. Some patterns, e. g., show larger gaps than others (cp. two
Sierpinsky carpets with the same dimension but of differently scattered eliminated squares in
Fig. 1). Therefore, Mandelbrot has introduced an additional term which describes such feature
of “more-or-less-gaps”: the lacunarity [11]. Patterns with larger gaps have a higher lacunarity
than those with smaller gaps. In a more general sense, the higher the lacunarity of a pattern,
the less translational invariant it is.

A B

Fig. 1. (A) and (B) different Sierpinsky
carpets with the same fractal dimension
Df ≈ 1.8957 but of differently scattered
eliminated squares.

Such a property is also of interest in the study of the micro-architecture of trabecular bone.
Different osteoporotic stages cause differently deteriorated trabeculae, i.e. larger gaps and holes
for a higher degree of osteoporosis.
In [5], the lacunarity was already applied to 2D CT images. However, this investigation was

of more exemplary nature; they have not studied a large set of real bone images in regard of
various osteoporotic stages.
For an additional view on 3D images of bone biopsies it may be useful, to analyze their level

of translational invariance. Moreover, with the analysis of the lacunarity as a function of the
box size, typical scales in the objects can be determined.
The definition of the lacunarity has slightly changed over the time. However, all definitions

are based on the fluctuations of the mass distribution within a box sliding over the entire object
(non-overlapping boxes). The number of mass elements1 (which is in our case bone) within the
sliding box of size r has to be counted (box mass s). This counting has to be repeated over the
entire object producing the frequency distribution of the box masses n(s, r).
A popular definition of the lacunarity uses the ratio of the second and first moment of this

distribution n(s, r) [14]:

Λ(r) =
µ2(r)

µ21(r)
, (2.1)

where the first moment is

µ1(r) =
1

N

∑
s

s n(s, r), (2.2)

the second is

µ2(r) =
1

N

∑
s

s2 n(s, r) (2.3)

and N is the total number of boxes.
In a former definition of the lacunarity only the variance of the mass distribution was taken

into account [6].

1 This analysis can also be applied to non-binary data – if the total mass is spread evenly over the
entire set, the lacunarity will be low, but if the mass is concentrated at a few points, however, lacunarity
will be high.
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Fig. 2. Lacunarity for examples of random and regular distributed and sized objects.

This definition (2.1) of the lacunarity can be applied to one- and also to higher-dimensional
data. The implementation for an analysis of 3D µCT images is straightforward.

Usually, this measure is computed as a function of box size r in an interval of r ∈ [1,M/2]
(where M is the size of the object) and plotted in a log-log plot (Fig. 2).

An alternative definition is the normalized lacunarity [5]

Λ∗(r) = 2−
(
1

Λ(r)
+
1

Λ(r)

)
, (2.4)

where Λ(r) is the complementary lacunarity (lacunarity of the complemented object), ensuring
a lacunarity measure within the range 0 and 1.

From a log-log-plot of the lacunarity in respect to the box size r the following can be inferred:

1. sparse patterns have higher lacunarity than dense patterns for the same gliding box size;
2. λ(r) decreases for increasing r, because larger boxes will be more translationally invari-
ant than smaller boxes;

3. for a given object mass and box size higher lacunarity indicates greater clumping; if the
box size reaches the size of the clumps, the curve declines more rapidly (identification of
scales);

4. a linear decrease of the curve in the log-log plot reveals a large amount of self-similarity
in the object.

In the following we illustrate the lacunarity measure with prototypical examples. We use
two 3D objects, where the first consists of randomly distributed balls of random size and the
second object consists of periodically distributed balls of fixed size r = 10 voxels (distance
between the center of balls is 20 voxels).

The log-log plot of the lacunarity for the random object reveals a monotone increasing
without any interesting changes in the slope (Fig. 2). The log-log plot for the regular object,
however, reveals at the box size of r = 10 voxels a sudden change in the slope, which corresponds
with the diameter of the balls. Where the box size reaches the period distance between the balls,
the lacunarity becomes zero (at r = 20 voxels). The later periodic behaviour of the curve is due
to the periodic arrangement of the balls.

In the log-log-plot of the normalized lacunarity for the same objects all the characteristic
features which we have already found in the lacunarity plot are much more emphasized (Fig. 3).
Using the normalized lacunarity it is easier to find the characteristic length scales for the regular
object. The rather monotonic curve is typical for random objects without characteristic scales.
Therefore, we focus on the normalized lacunarity henceforth.
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Fig. 3. Normalized lacunarity for examples of random and regular distributed and sized objects.

3 Moran’s I index and geary’s C index

Small-scale spatial auto-correlation can be quantified by using Moran’s I index and Geary’s
C index. Originally from theoretical ecology, the Moran’s I index has already found its way
into 2D image analysis [1,3]. Here we will extend its definition properly in order to analyse
3D images.
The Moran’s I index for a two-dimensional image is defined by [1,3]

I =
N

S0

∑d1×d2
j=1

∑d1×d2
i=1 δij (xi − x̄) (xj − x̄)∑d1×d2
i=1 (xi − x̄)2

, (3.1)

where d1 and d2 are the geometric size of the image (columns and rows), xi is the value at
the specified position, x̄ is the mean of the image, δij = 1 if pixel i and j are adjacent and 0
otherwise, N = d1d2 is the total number of pixels and S0 =

∑∑
δij is the number of contiguous

pairs (S0 = 4d1d2 − 3(d1 + d2) + 2; note that the equations for S0 are not correct in the works
of [1–3]). Its values varies between −1 and +1. If autocorrelation is high, the index will tend
toward −1; if autocorrelation is high but negative, the index will tend toward +1 and if not
correlated, the index will be zero.
For our purpose we have to extend the definition (3.1) to three dimensions:

I =
N

S0

∑d1×d2×d3
j=1

∑d1×d2×d3
i=1 δij (xi − x̄) (xj − x̄)∑d1×d2×d3
i=1 (xi − x̄)2

, (3.2)

where S0 is now

S0 = 13d1d2d3 − 9 (d1d2 + d2d3 + d3d1) + 6 (d1 + d2 + d3)− 4. (3.3)

Pairs of contiguous neighbours have to be counted only once. Therefore, the considered
vicinity of a pixel is not a cube, but a more subtle geometric body (Fig. 4).
A similar measure as the Moran’s I index is the Geary’s C index, which is an average of

the variation between adjacent pixels

C =
(N − 1)
2S0

∑d1×d2×d3
j=1

∑d1×d2×d3
i=1 δij (xi − xj)2∑d1×d2×d3

i=1 (xi − x̄)2
. (3.4)

Values typically range between 0 and 2, where 0 indicates negative spatial autocorrelation,
2 indicates positive spatial autocorrelation and 1 no autocorrelation. This index is inversely
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Fig. 4. Contiguous neighbours (gray) of a voxel (black) in 3D.

related to Moran’s I index. However, Moran’s I index gives a more global indicator, whereas
Geary’s C coefficient is more sensitive to differences in small neighbourhoods.
In the following we apply these indices to prototypical examples. We use three 3D objects,

where the first consists of randomly distributed balls of random size, the second of periodically
distributed plates of fixed size and the last of periodically distributed rods of fixed size. Plates
and rods are typical micro-structures forming trabecular bone.
As expected, both measures are anti-correlated and regular structures are more anti-

correlated than random structures (Fig. 5). The anti-correlation points to the fact that these
measures quantify the interface between the rods/plates and the empty space around them. The
change of the shape of the plates to, e.g., rods, changes the ratio between surface and volume
of these micro-structures. This change of the shape is reflected by a change of the correlation.
We find that rod-like structures are more anti-correlated than plate-like structures.
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A  

B  

C  

Moran’s Index & Geary’s Index

Moran’s Index
Geary’s Index

Fig. 5. Moran’s and Geary’s index for (A)
random sized and distributed balls, (B) reg-
ularely distributed plates and (C) regularely
distributed rods of fixed size.

4 Application to trabecular bone of proximal tibia

4.1 Materials

Now we apply the proposed measures to 3DµCT images of human proximal tibia. For this
analysis, autopsy material comprising 16 women aged 57–92 years and 8 men aged 60–94 years
is used [20]. None of these donators had any skeletal disease except some of the subjects had
osteoporosis. Bone biopsies were taken 15mm below the tibia plateau at the medial side, and
have a cylindrical shape with a diameter of 7mm and lengths of 20–40mm. The biopsies were
scanned with a Scanco µ CT40 scanner at Scanco Medical AG, Switzerland, using a voxel size
of 20× 20× 20µm3.
The 24 µCT images are transformed to binary images by applying a threshold (1: bone;

0: marrow). The proposed measures are computed in a pre-defined volume of interest (VOI),
which is a 10 mm long segment located 5 mm below the cortical bone [20].
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4.2 Normalised lacunarity

The normalised lacunarity is computed using box sizes between 2 and 100 voxels (40–2000µm).
The sliding step is the same as the box size, i.e. the sliding box does not overlap.
At first we compare the normalised lacunarity Λ∗ with the bone volume fraction BV/TV

for a fixed box size of 20 voxels, i.e. 400µm (Fig. 6). BV/TV is a measure with high correlation
to bone strength and osteoporosis. The smaller BV/TV, the higher Λ∗, i. e. bone becomes more
translational invariance during bone loss (development of osteoporosis).
The log-log-plots of Λ∗ in regard of the box size r can be used to look on characteristic length

scales (Fig. 7). The minima of the curves reveal characteristic lengths like sizes of trabeculae or
distances between them. For the examples in Fig. 7 we find such minima at 1500 and 1750µm
for low BV/TV (0.11), at 1650 and 1780 µm for the examples with higher BV/TV (0.17 and
0.26). However, the biopsy with the highest BV/TV shows many minima which are not as clearly
formed as in the other both examples with lower BV/TV. This is a sign of many different length
scales in the trabecular bone, thus of a higher complexity of the trabecular bone structure.
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Fig. 6. Normalized lacunarity of proximal tibia for box size
400 µm.
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Fig. 7. Normalized lacunarity Λ∗ as function of box size r for proximal tibia of three different bone
volume fractions BV/TV: (A) 0.11, (B) 0.17 and (C) 0.26. The clear minima reveal characteristic length
scales in the trabecular bone (see text for details).

From Fig. 3 we have learned, that the normalised lacunarity Λ∗ for regularly distributed and
sized structures exhibits a more sudden change of the slope. However, Λ∗ decreases more slowly
with increasing box size r for the irregular structures. For the three examples of trabecular
bone, we find that the slope of Λ∗ changes more slowly for higher BV/TV. From this finding
we can again infer that the complexity of the bone is reduced during bone loss.

4.3 Moran’s I and Geary’s C index

Next we apply the Moran’s I and Geary’s C index to the µCT data of the proximal tibia biopsies.
Both measures reveal high spatial anti-correlation with values between 0.79 and 0.87 (Moran’s I)
and between 0.15 and 0.25 (Geary’s C). They exhibit a tendency of decreasing the spatial
auto-(anti-)correlation for decreasing BV/TV (Fig. 8). This is a surprising result because it
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could imply that the spatial structures become more randomly distributed and randomly sized
for decreased BV/TV, i.e. bone loss (stronger osteoporosis). This is in contrast to the recent
findings that the complexity would decrease with bone loss. On the other hand, both indices
also distinguish between the shape of the trabeculae (cf. examples in Subsect. 3). Since we
have found that the anti-correlation is higher in objects mainly consisting of rod-like structures
than in objects consisting of plates, we can infer that the growth of the spatial anti-correlation
during bone loss is caused by a change from mainly plate-like trabeculae to mainly rod-like
trabeculae. This finding is confirmed by previous studies, where a change from plate-like to
rod-like structures were found to be the main reason for bone loss during aging [24].
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Fig. 8. (A) Moran’s I and (B) Geary’s C index for proximal tibia as functions of BV/TV.

5 Conclusion

In this study we have generalised measures of complexity based on fractal properties and spa-
tial auto-correlation for the investigation of 3D images. The lacunarity measures translational
invariance of 3D structures and can be used to detect characteristic length scales. Moran’s I and
Geary’s C index measure spatial auto-correlation and are able to distinguish between different
shapes of 3D micro-structures, like plates and rods.
Using lacunarity as well as Moran’s I and Geary’s C index, we have investigated trabecular

bone of human proximal tibia, based on the analysis of 3D µCT images. We have found that the
trabecular bone becomes more translational invariant and less complex during bone loss. The
characteristic length scales of the trabeculae are also reduced during bone loss. Using Moran’s
I and Geary’s C index we have found that the plate-like shape of trabeculae change to rod-like
shapes during bone loss.
The proposed measures confirm previous findings of investigations using histomorphometry

or structural measures of complexity. However, they used other properties of the trabecular
bone. Moreover, the measures of complexity proposed here are quite simple to compute on
the base of µCT images (in contrast to the invasive procedure of bone histomorphometry).
They may be a good starting point for new quantitative descriptors of 3D structures, like
trabecular bone.
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