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Abstract. A better understanding of precipitation dynamics
in the Indian subcontinent is required since India’s society
depends heavily on reliable monsoon forecasts. We intro-
duce a non-linear, multiscale approach, based on wavelets
and event synchronization, for unravelling teleconnection in-
fluences on precipitation. We consider those climate pat-
terns with the highest relevance for Indian precipitation.
Our results suggest significant influences which are not
well captured by only the wavelet coherence analysis, the
state-of-the-art method in understanding linkages at multi-
ple timescales. We find substantial variation across India and
across timescales. In particular, El Niño–Southern Oscilla-
tion (ENSO) and the Indian Ocean Dipole (IOD) mainly
influence precipitation in the south-east at interannual and
decadal scales, respectively, whereas the North Atlantic Os-
cillation (NAO) has a strong connection to precipitation, par-
ticularly in the northern regions. The effect of the Pacific
Decadal Oscillation (PDO) stretches across the whole coun-
try, whereas the Atlantic Multidecadal Oscillation (AMO)
influences precipitation particularly in the central arid and
semi-arid regions. The proposed method provides a power-
ful approach for capturing the dynamics of precipitation and,
hence, helps improve precipitation forecasting.

1 Introduction

Understanding the spatial patterns, frequency and intensity
of precipitation in the Indian subcontinent is an active area of
research due to its essential impact on life and property (Pai
et al., 2015). The Indian monsoon is the pulse and lifeline of
over 1 billion people, and the socio-economic development
in this part of the world heavily depends on reliable predic-
tions of the monsoon (Goswami and Krishnan, 2013; Shukla
et al., 2018).

Numerous studies have emphasized the importance of un-
derstanding the influence of large-scale climatic patterns on
precipitation for improving forecast accuracy (Feng et al.,
2016), and therefore many studies have analysed the rela-
tionship between precipitation and climatic patterns for In-
dia. This research has shown that the relevant patterns are the
El Niño–Southern Oscillation (ENSO) (Kumar et al., 2006;
Mokhov et al., 2012), the Indian Ocean Dipole (IOD) (Be-
hera et al., 1999; Krishnan and Swapna, 2009), the North At-
lantic Oscillation (NAO) (Bharath and Srinivas, 2015; Feliks
et al., 2013), the Pacific Decadal Oscillation (PDO) (Dong,
2016; Krishnan and Sugi, 2003), and the Atlantic Multi-
decadal Oscillation (AMO) (Goswami et al., 2006; Krishna-
murthy and Krishnamurthy, 2016).

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



252 J. Kurths et al.: Unravelling spatial diversity

Over the years, linkages between climatic patterns and
precipitation have been investigated by a range of statisti-
cal methods, such as correlation (Abid et al., 2018), princi-
pal component analysis (Luterbacher et al., 2006), empiri-
cal orthogonal functions (Hannachi et al., 2007), and regres-
sion and canonical analysis (Xoplaki et al., 2004). However,
all these methods are limited in capturing the scale-specific
feedbacks and interactions between the long-range climatic
patterns and precipitation. Such information is very crucial
since in climatic systems energy is stored and transported
differently on different temporal scales, resulting from inter-
actions of intertwined sub-components across a wide range
of scales (Miralles et al., 2014; Peters et al., 2007). Multi-
scale interactions have therefore received extensive attention
in the field of climate dynamics (Peters et al., 2007; Stein-
haeuser et al., 2012) and have been proposed as a mechanism
for triggering extreme events (Agarwal et al., 2018b; Okin et
al., 2009; Paluš, 2014; Peters et al., 2004) and abrupt tran-
sitions (Peters et al., 2007). This holds the promise of better
understanding the system dynamics compared to analysing
processes at one timescale only.

In recent decades, wavelet coherence has become the state-
of-the-art method for studying the influence of climatic pat-
terns on precipitation at different temporal scales. For exam-
ple, Ouachani et al. (2013) investigated the multiscale lin-
ear relationship between the Mediterranean region (northern
Africa) and large-scale climatic patterns such as ENSO, NAO
and PDO. The study reported a strong correlation between
ENSO and precipitation series at a lag of 2 years. The study
further reported that the influence of ENSO on precipitation
was stronger compared to other climatic modes considered in
this particular study. Coherently, Tan et al. (2016) analysed
the relations between Canadian precipitation and different
global climate indices. Similar studies using wavelet coher-
ence also reported in other parts of the world (Agarwal et al.,
2016; Araghi et al., 2017; Hu and Si, 2016; Tan et al., 2016),
though all such studies based on wavelet coherence were illu-
minating and contributed significantly to our existing knowl-
edge of the climate. However, there remains a large scope for
advancement, in particular in capturing the non-linear scale-
specific interactions between climate patterns and Indian pre-
cipitation.

To capture such non-linear scale-specific interactions, re-
cently event synchronization (ES) has emerged as a power-
ful similarity measure (Agarwal et al., 2019a; Mitra et al.,
2017; Ozturk et al., 2018; Quiroga et al., 2002) because ES
automatically classifies pairs of events arising at two loca-
tions as temporally close (and, thus, possibly statistically –
or even dynamically – interrelated) without the necessity of
selecting an additional parameter in terms of a fixed tolerable
delay between these events. Also, ES is a robust measure to
study the interrelationship between a series of non-Gaussian
data or data with heavy tails (Agarwal, 2019). These intrinsic
features of ES are advantageous in climate in general and for
quantifying interactions between climatic patterns and pre-

cipitation in particular since the time delay between such
patterns (for e.g. ENSO) and their effect on precipitation is
tedious to quantify beforehand.

We, therefore, decided to use ES to quantify the (pos-
sibly non-linear) linkages between large-scale climatic pat-
terns and precipitation across India. More specifically, we
analyse the linkages between the 95th percentile extreme
events, extracted from gridded Indian precipitation data at
monthly resolution, and the climate patterns ENSO, IOD,
NAO, PDO, and AMO which have been shown to be of
significant relevance for precipitation in India. We combine
ES with the wavelet transform, as proposed recently (Agar-
wal et al., 2017). This combination, termed MSES (multi-
scale event synchronization), allows non-linear connections
between time series to be studied at different temporal scales.
To consider the spatial variation across India, we sub-divide
India into homogeneous regions that share rather similar pre-
cipitation characteristics and identify a representative grid
cell for each region. The homogenous regions and the repre-
sentative grid cells are obtained using the concept of a com-
plex networks approach (Agarwal et al., 2018a), and the re-
sultant network is referred to as a climate network (Agarwal
et al., 2019a; Boers et al., 2019; Ekhtiari et al., 2019; Tsonis
et al., 2006).

The novelty of this study is the integration of (1) the non-
linear method for quantifying the linkages between large-
scale climate patterns and the climate network (precipitation)
in India at (2) multiple timescales, considering (3) the spatial
variation of these linkages. To our knowledge, this combi-
nation (non-linear–multiple timescales–spatial variation) has
not yet been implemented, neither for India nor for any other
region. We argue that it allows the spatio-temporal diversity
of Indian precipitation teleconnections to be unravelled, of-
fering a compelling perspective for capturing the dynamics
of precipitation and improving precipitation forecasting.

2 Study area and data

2.1 Study area

Our study area is the Indian subcontinent, which shows a
significant variation in climate characteristics. India extends
over an area of 3 287 263 km2. Its climate regimes are clas-
sified as arid (north-western India), semi-arid (northern low-
lands and central peninsular India), humid (coastal lowlands,
south-western and north-eastern highlands) and alpine (Hi-
malayan mountains in the north). The spatio-temporal vari-
ation of precipitation, as well as temperature, is significant
over the country (Bharath and Srinivas, 2015). The entire
country receives 80 % of its total precipitation during the
south-western monsoon, from June to September (Bharath
and Srinivas, 2015). During the north-eastern monsoon (Oc-
tober to December), the precipitation is considerable but is
confined to the south-eastern part of the country.
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2.2 Gridded precipitation data

We use the high-resolution (0.25◦ × 0.25◦)monthly gridded
precipitation dataset for the period 1951–2013, developed by
the Indian Meteorological Department (IMD) for the spatial
domain of 66.5 to 100◦ E and 6.5 to 38.5◦ N, covering the
mainland region of India (Pai et al., 2014). The gridded data
have been generated from the observations of 6995 gauging
stations across India (Pai et al., 2014). The dataset captures
well the spatial distribution of precipitation over the country.
For our study, out of 17 415 grid cells, 4631 cells lying inside
the boundaries of India were identified.

2.3 Time series of global and regional climate indices

To understand the linkages between climate patterns and pre-
cipitation, we use time series of global and regional climate
indices for the same period, i.e. 1951–2013. We have se-
lected those indices for which earlier studies have shown a
relation to Indian precipitation. The selected climate indices
and the respective studies are ENSO (Mokhov et al., 2012),
IOD (Ashok et al., 2001), NAO (Bharath and Srinivas, 2015;
Feliks et al., 2013), PDO (Dong, 2016; Krishnan and Sugi,
2003) and AMO (Goswami et al., 2006; Krishnamurthy and
Krishnamurthy, 2016). For detailed information on these cli-
mate indices and the data sources, we refer the reader to
https://www.esrl.noaa.gov/ (last access: 26 May 2018).

3 Methodology

To investigate the non-linear, multiscale linkages between
climate patterns and precipitation, we propose an analysis
based on combining network reconstruction, community de-
tection, wavelet transformation, and event synchronization
(Fig. 1). First, we construct a precipitation network of the
precipitation dataset using event synchronization. We further
pool grid cells with similar precipitation characteristics into
homogenous regions and identify a representative grid cell
for each region as proposed by Agarwal et al. (2018a). The
linkages between the precipitation time series of the repre-
sentative cells and the teleconnection indices are analysed
by the MSES method developed by Agarwal et al. (2017).
Finally, the proposed methodology is compared to the state-
of-the-art wavelet coherence analysis (WCA).

3.1 Event synchronization and network construction

ES measures the non-linear synchronization of point pro-
cesses (Quiroga et al., 2002). Each grid cell of the precip-
itation dataset serves as a network node, while the precipi-
tation estimates at each cell provide the time series for that
node. Following Agarwal et al. (2018a), we define heavy pre-
cipitation events at each node as events with precipitation
larger than the 95th percentile at that grid cell. The 95th per-
centile threshold for event selection is globally accepted as

a tradeoff between a sufficient number of events and a high
threshold value. Then ES is used to calculate the strength of
synchronization (Q) between all possible pairs of grid cells.
ES has advantages over other time-delayed correlation tech-
niques (e.g. Pearson lag correlation), as it uses a dynamic
(not fixed) time delay (Agarwal et al., 2017). The latter refers
to a time delay that is adjusted according to the two time se-
ries being compared, which allows its application to different
situations. Another advantage of ES is that it can be applied
to non-Gaussian data. Having its roots in neuroscience, ES
only considers events beyond a threshold and ignores the ab-
solute magnitude of events, which could be a challenge to
incorporate in future work.

Here, we define an event when a value in the signal x (t)
(or y (t)) exceeds a threshold (selected by a α percentile).
Events in x(t) and y(t) occurring at time txl and tym, where
l = 1,2,3,4. . .Sx , m= 1,2,3,4. . .Sy , are considered to be
synchronized when they occur within a time lag ±τ xylm which
is defined as in Agarwal et al. (2017).

τ
xy
lm =min

{
txl+1− t

x
l , t

x
l − t

x
l−1, t

y

m+1− t
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m− t

y
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Sx and Sy are the total number of events (greater than thresh-
old α) that occurred in the signals x(t) and y (t), respectively.
This definition of the time lag helps to separate independent
events. Then we count the number of times an event occurs
in the signal x(t) after the maximum time lag τ xylm of an event
that appears in the signal y(t) and vice versa, resulting in the
quantities C (x|y) and C (y|x):

C (x|y)=

Sx∑
l=1

Sy∑
m=1

Jxy and C (y|x)=
Sx∑
l=1

Sy∑
m=1

Jyx, (2)

with
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1 if 0< txl − t

y
m < τ

xy
lm ,

1
2 if txl = t

y
m,

0 else.
(3)

From these quantities, we define a measure of the strength
of event synchronization (Qxy) between x (t) and y(t) by

Qxy =
C (x|y)+C (y|x)√
(Sx − 2)(Sy − 2)

. (4)

Qxy is normalized to 0≤Qxy ≤ 1.Qxy = 1 refers to perfect
synchronization between the signals x(t) and y (t). ES has
been specifically designed to identify non-linear associations
among event time series with varying lags between them.

A link between two grid cells is set up if their heavy pre-
cipitation occurrences are strongly synchronized, which we
define as having a Q value greater than a predefined thresh-
old (θQx,y). A number of criteria have been proposed to gen-
erate an adjacency matrix from a similarity matrix, such as a
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Figure 1. Schematic of the methodology to investigate the linkages between climate patterns and precipitation. (“M” stands for method and
“R” for result.)

fixed amount of link density (Agarwal, 2019) or fixed thresh-
olds (Donges et al., 2009). Here, we consider a 5 % link den-
sity since it is a well-accepted criterion in general for the net-
work construction. Also, the 95th percentile is a good trade-
off between having a sufficient number of connections and
capturing high synchronized connections.

We repeat the procedure for all possible pairs of nodes to
construct a precipitation network with the adjacency matrix

Ax,y =

{
1, ifQx, y ≥ θ

Q
x, y,

0, else.
(5)

Here, θQx,y = 95th percentile is a chosen threshold, Ax,y = 1
denotes a link between the xth and yth nodes and 0 denotes
otherwise. The adjacency matrix represents the connections
in the rainfall network. In this study, we use an undirected
network, meaning we do not consider which of the two syn-
chronized events happened first, in order to avoid the possi-
bility of misleading directionalities of event occurrences be-
tween nodes that are topographically close to one another.

3.2 Community detection and the Z − P approach

The linkages between climate indices and precipitation are
evaluated on a regional scale. India is subdivided into homo-
geneous regions with similar characteristics of heavy precip-
itation events using the concept of complex networks (Agar-
wal et al., 2018). Several studies such as Agarwal et al.
(2019b), Halverson and Fleming (2015), Lancichinetti and
Fortunato (2009), Newman (2006), Sivakumar et al. (2015),
and Tsonis et al. (2011) have reported superior performance
of complex networks in identifying homogeneous regions
compared to more traditional methods, such as the hierar-
chical clustering algorithm or the information-theoretic al-
gorithm (Harenberg et al., 2014).

There exist several community detection approaches aim-
ing at stratifying the nodes into communities in an optimal
way (see Fortunato, 2010, for an extensive review). The ques-
tion of which community detection algorithm should be used
is difficult to answer. However, it has been found that the
choice of the community detection algorithm has a small im-
pact on the resultant communities in geophysical data sci-
ence studies (Halverson and Fleming, 2015). In this study,
we use the Louvain method which maximizes the modularity
to find the optimal community structure in the network. The
optimal community structure is a subdivision of the network
into non-overlapping groups of nodes, which maximizes the
number of within-group edges and minimizes the number
of between-group edges (Blondel et al., 2008; Rubinov and
Sporns, 2011).

Modularity is defined, besides a multiplicative constant,
as the number of edges falling within groups minus the ex-
pected number in an equivalent network with edges placed at
random. Positive modularity values suggest the presence of
communities. Thus, one can search for community structures
by looking for the network divisions that have positive, and
preferably large, modularity values (Newman, 2004). Modu-
larity (M) is calculated as

M =
1

2m

∑
x,y

⌊
Axy −

kxky

2m

⌋
δ(CxCy), (6)

where Axy represents the number of edges between x and
y,kx =

∑
y

Axy is the sum of the number of the edges (de-

gree) attached to vertex x, and Cx is the community to which
vertex x is assigned, and the δ function δ(u,v) is 1 if u= v
and 0; otherwise, m= 1

2
∑
xy

Axy .
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Equation (6) is solved using the two-step iterative algo-
rithm proposed by Blondel et al. (2008), also known as the
Louvain method. The first step consists in optimizing the
modularity by permitting only a local modification of com-
munities; in the second step, the communities identified are
pooled to assemble a new network of communities. High-
modularity networks are densely linked within communi-
ties but sparsely linked between communities. The algorithm
stops when the highest modularity is achieved.

Further, for each community, we identify a representative
grid cell using the Z−P space approach, where Z is the
within-module degree or Z score and P is the participation
coefficient (Agarwal et al., 2018a). The within-module de-
gree (Zx orZ score) is a within-community version of degree
centrality (total number of links of any node) and shows how
well a node is connected to other nodes in the same commu-
nity. It is estimated as in Guimer and Amaral (2005).

Zx =
Kx −Ksx

σksx
, (7)

where Kx is the total number of links (degrees) of node x in
the community sx , Ksx is the average degree of all nodes in
the community sx , and σksx is the standard deviation of K in
sx . Since two nodes with the sameZ score may play different
roles within the community, this measure is often combined
with the participation coefficient Px .

The participation coefficient (Px) compares the number of
links of node x to nodes in all communities with the number
of links within its own community. We define the Px of node
x as in Guimer and Amaral (2005).

Px = 1−
∑NM

sy=1

(
kxsy

kx

)2

, (8)

where kxsy is the number of links of node x to nodes in com-
munity sy and kx is the total number of links (degrees) of
node xNM representing the number of communities in the
network. The participation coefficient of a node is therefore
close to one if its links are uniformly distributed among all
the communities and zero if its entire links are within its own
community because in the latter case Kxsy =Kx and hence
Px = 0.

The cell with the highest number of intracommunity links
is considered representative (Halverson and Fleming, 2015),
based on the argument that this cell shows the strongest syn-
chronization within the community. We expect its climato-
logical properties, such as the linkage to large-scale climate
patterns, to have the highest similarity to the properties of the
other cells in the community. We could also use a composite,
e.g. by normalizing the grid cell time series and defining the
time series of the mean of the normalized series as represen-
tative. However, this definition would reduce the variability
and could mask existing connections to climatic patterns.

3.3 Multiscale event synchronization

In this study, we use the MSES measure (Agarwal et al.,
2017) that combines the wavelet transform and event syn-
chronization to quantify the relationship between precipita-
tion and climate indices. The multiscale event synchroniza-
tion measure is based on a combination of wavelet transform
and event synchronization (Sect. 3.1). The following subsec-
tions discuss briefly the wavelet transform and finally the
methodology for MSES.

3.3.1 Wavelet analysis

Synthetically the temporal data series of any continuous geo-
physical variable is the superposition of variations occur-
ring at different scales. Different physical processes drive
these patterns, and a partitioning of the variability at dif-
ferent scales can help to isolate and characterize underly-
ing processes (Agarwal et al., 2018b; Agarwal et al., 2019a).
Wavelets have been successfully used to characterize the
timescale of interactions across fluxes and physical drivers
(Katul et al., 2001; Ding et al., 2013).

The wavelet transform of a signal decomposes it into a set
of components with predefined central frequencies and spec-
tral bandwidths. Here we use the maximal overlap discrete
wavelet transform (MODWT) (Percival and Walden, 2000)
because the orthogonal discrete wavelet transform (DWT)
results in a pyramid of wavelet coefficients which does not
contain the time synchronization of the events. Further, our
experience with DWT suggests that the latter approach suf-
fers from “shift sensitivity”, also known as “shift variance”,
and is undesirable because it implies that DWT coefficients
fail to distinguish between input-signal shifts (Maheswaran
and Khosa, 2012). Even though the MODWT has large re-
dundancy, it is shift-invariant, and this property renders the
MODWT more suited to time series analysis.

MODWT decomposes the time series into different
timescales or frequency components. The wavelet decompo-
sition is realized using the two basis functions known as fa-
ther wavelets and mother wavelets. Any function f (t) can be
expressed in these basis functions and their scaled and trans-
lated versions as given in Eq. (9).

f (t)=
∑
k

sJ,kϕJ,k (t)+
∑
k

dJ,kψJ,k (t)

+

∑
k

dJ−1,kψJ−1,k (t) . . .+
∑
k

d1,kψ1,k (t) , (9)

where J is the number of multiresolution components
(scales) and k is in the range of 1 to the number of
the coefficient in the specified component. The coefficients
sJ,k are the approximation coefficients and dJ,k ,. . . , d1,k
are the wavelet transform coefficients, while the functions
ϕJ,k (t) and ψj,k (t))|j = 1, . . .J,−1,J are the approximat-
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ing wavelet function and detailed wavelet functions, respec-
tively.

These basis functions are defined in terms of father and
mother wavelets as follows:

ϕj,k (t)= 2−j/2ϕ
(

2−j t − k
)
, (10)

ψj,k (t)= 2−j/2ψ
(

2−j t − k
)
. (11)

Further,

sJ,k ≈

∫
ϕJ,k (t)f (t)dt (12)

dj,k ≈

∫
ψJ,k (t)f (t)dtj = 1, . . .J − 1,J (13)

where the scaling coefficients sJ,k capture the smooth trend
of the time series at the coarse scale 2J , which are also called
smooth coefficients; and the wavelet coefficients dj,k , also
known as detail coefficients can detect deviations from the
coarsest scale to the finest scale.

The original series f (t) can be reconstructed by the sum-
ming the detailed components and the smooth components.

f (t)= SJ,k +DJ,k +DJ−1,k + . . .D1,k, (14)

where

SJ,k =
∑
k

sJ,kϕJ,k (t) ,DJ,k =
∑
k

dJ,kψJ,k (t)

. . .D1,k =
∑
k

d1,kψ1,k (t) . (15)

Equation (14) defines a multiresolution analysis (MRA) of
f (t); i.e. we express the series f (t) as the sum of a con-
stant vector SJ and J other vectors Dj , j = 1, . . .,J , each of
which contain a time series related to variations in f (t) at a
certain scale. We refer to Dj as the j th-level wavelet detail.
Figure 2 shows the MODWT decomposition of a sample sig-
nal up to seven scales resulting in seven detailed components
(D1–D7) and one approximate component (S7).

Let Yt represent a time series history of a geophysical pro-
cess. In order to partition the variability of the process at dif-
ferent scales j = 1. . .J the signal Yt is transformed into the
wavelet space which provides the required information at dif-
ferent scales. This is obtained by convolving Yt with a set of
low-pass (g) and high-pass (h) filters. For instance, at each
scale j , the MODWT applies a high-pass wavelet filter hj,l
and a lower-pass filter gj,l of length (l) to the time series Y to,

Figure 2. Scheme of multi-scale decomposition of signals us-
ing maximum overlap discrete wavelet transformation (MODWT).
The relationship between signal Yt (blue), detailed component Dj
(black), and approximate component Sj (red) is shown.

respectively, yield the wavelet coefficients Wj,t and Vj,t for
every point t in the time series (Percival and Walden, 2000).

Wj,t =

Lj−1∑
l=0

hjYt-lmod2N

Vj,t =
Lj−1∑
l=0

gj,lYt-lmod2N

 (16)

The Wj,t wavelet coefficients distinguish fluctuations in the
time series of scale 2j−1, while the Vj,t coefficients provide
information about the variations at scale 2j and higher. Let
the maximum level of decomposition be j = J . This would
result in a total ′J + 1′ series of wavelet coefficients, with
Wj,t , j = 1,2,3. . .J , and one series of VJ,t .

Let us now defineDj which represents the time domain re-
construction ofWj . It represents the portion of Y attributable
to scale j . Let SJ represent the time domain reconstruction
of VJ . For the maximum level of decomposition, VJ has all
of its elements equal to the sample mean of Y .

Therefore, we can write

Y =

J∑
j=1

Dj + SJ . (17)
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3.3.2 Stepwise procedure to estimate MSES

The MSES values between precipitation and climate indices
are estimated in the following manner.

a. The climate indices and precipitation values at monthly
resolution are decomposed into its various scale-specific
components as proxies of the corresponding signal us-
ing the maximum overlap discrete wavelet transforma-
tion (MODWT). These components represent the fea-
tures of the signal at different timescales. We limit the
analysis to scale 7, i.e. 16 years, due to the distortion
created by the boundary effects of the wavelet decom-
position (Percival, 2008).

b. After fixing a 95 % threshold for each of the decom-
posed components of precipitation and climate indices,
the event synchronization values are estimated. The
95 % threshold values are estimated for each scale com-
ponent separately, ensuring a reliable estimation of the
synchronization between the events.

c. The estimated ES values are considered significant if
they are higher than the ones obtained from a signifi-
cance test (Agarwal et al., 2017).

d. These steps (a–c) are repeated for all combinations of
climate indices and precipitation for the different re-
gions.

3.4 Significance test for similarity measure

To evaluate the statistical significance of the ES values, a
surrogate test is used as proposed by Agarwal et al. (2017).
We randomly reshuffle each time series 100 times (arbitrary
number) but keep the distribution the same. The reshuffling
will ensure that any potential synchronization between the
even series will be destroyed and that they will be equivalent
to independent random series. Then, for each pair of time se-
ries (rainfall and climate time series), we calculate the MSES
values for the different scales. At each scale, the empirical
test distribution of the 100 MSES values for the reshuffled
time series is compared to the MSES values of the original
time series. Using a 1% significance level, we assume that
synchronization cannot be explained by chance if the MSES
value at a certain scale of the original time series is larger
than the 99th percentile of the test distribution.

3.5 Testing of MSES on a synthetic dataset

In a previous study, we have tested the MSES measure with
different synthetic time series and have shown the efficacy of
the method (Agarwal et al., 2017). In this paper, we further
test the method with synthetic datasets and compare the re-
sults with those of the traditional methods such as correlation
analysis and wavelet coherence.

Figure 3. Test signals X(t) (a) and Y (t) (b) with two distinct fre-
quencies having a lagged relationship induced by H (t) used to ex-
plain the methodology.

Consider two time series X and Y (of length 1000) as de-
fined by

X(t)= sin(0.5t)+ e(t)+ a×H(t), (18)
Y (t)= sin(0.1t)+ e(t)+ a×H(t − 3), (19)

where e(t) and H (t) denote a white noise process ∼N(0,1)
and a random binary series with values 1 or 0. H(t) repre-
sents the aperiodic extreme events in the given time series.

Figure 3 shows the plot of X and Y with respect to time.
It can be observed that X and Y are time series with two
distinct frequencies but have a lagged relationship induced
by H(t). In this example, we have considered a = 4. The
zero lag correlation coefficient between X and Y can be es-
timated as −0.02 and the Pearson lag correlation is found
to be 0.3, both showing no significant correlation. However,
as expected, the MSES given by Agarwal et al. (2017) was
estimated to be 0.9375 at scale 1, revealing the underlying
synchronization between the two series in this scale only.

3.6 Wavelet coherence analysis (WCA)

We benchmark the MSES results against the WCA because
wavelet coherence is the state-of-the-art method in evaluat-
ing linkages between hydroclimatological variables at mul-
tiple timescales (Peters et al., 2004; Tan et al., 2016). We
use the Grinsted Toolbox (Grinsted et al., 2004) for calcu-
lating the WCA between precipitation of the representative
grid cells and the climatic indices. The wavelet coherence
between time series X{Xt } and {Yt } was defined by Torrence
and Compo (1998) as

R2 (j, t)=
|ς(j−1Wxy(j, t)|

ς(j−1|Wx (j, t) |2)ς(j−1
∣∣Wy (j, t)

∣∣2) . (20)

ζ is a smoothing operator and can be written as ς (W)=
ςscale (ςtime (W (j, t))). Wxy represents the cross-wavelet co-
efficient between X and Y . Wx (j, t) and Wy (j, t) denote
the wavelet coefficients obtained from wavelet transform of
X and Y , respectively, at scale j and time t .
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The global wavelet coherence at a certain scale j is defined
as the time-averaged value of the wavelet coefficients at the
scale with the COI. It is estimated by

R2 (j)=
1
n

t2∑
t=t1

R2(j, t), (21)

where nj is the number of points with COI and nj = t2−
t1+ 1.

Global wavelet coherence is a useful measure to exam-
ine the common characteristic periodicities between x and y.
Grinsted et al. showed the applicability of WC analysis of the
association of precipitation with climate variables (Grinsted
et al., 2004). A more detailed description of wavelet coher-
ence analysis can be found in Grinsted et al. (2004).

It is important to note that WCA uses the complete, contin-
uous time series for quantifying the linkages between precip-
itation and climate patterns, whereas MSES first derives ex-
treme events at the different timescales and then uses the syn-
chronization between these events to identify the linkages.

4 Results and discussion

4.1 Homogeneous regions and representative grid cells

To reduce the number of pairs of precipitation and climate
index time series for finding synchronization, we pool pre-
cipitation grid cells with similar heavy precipitation event
characteristics into homogeneous regions. These regions and
their main physical characteristics are given in Fig. 4. A more
detailed discussion of these regions is provided in a previ-
ous study (Agarwal et al., 2018a). For each community (C1
to C7), we identify a representative grid cell (black dots in
Fig. 4) using the Z−P space approach. C1 and C2 (Fig. 4)
both are in southern India but are differentiated by topologi-
cal (elevation, land, coastline and climate regimes) features.
C3 has moderate elevation, equatorial grasslands and semi-
arid climate regimes. C4 covers almost all of the greenest and
most mountainous regions of India (north-eastern India). C5
in north-western India covers dry and lowland areas. C6 in
the western coastline is near to both coastlines and low-lying
areas with two different climate regimes (arid and humid). C7
is very high mountainous region with alpine climate regimes.
Next, we investigate the non-linear linkages between the pre-
cipitation time series of the representative cells and the cli-
mate indices.

4.2 Linkages between precipitation and climatic
patterns at multiple timescales

Figures 5a–e and 6a–e show the MSES values and WCA
values between precipitation and the climate indices, respec-
tively. They are given for the five chosen climate indices and
extreme precipitation in each of the representative grid cells
of the seven homogeneous regions.

Figure 5a shows a significant association between El
Niño–Southern Oscillation (ENSO) and precipitation in all
regions of India at the interannual scale. Its strength varies
in space and with temporal scale. It is stronger for the south-
eastern peninsular (C1, C2, C3 and C4) and decreases no-
tably in the north-western Himalayan (C5, C6 and C7) re-
gions. In the south-eastern peninsula, the highest synchro-
nization for the low (C1), mild (C2) and moderate (C3)
elevation regions occurs at the 4-year scale and at the 2-
year scale for the high-elevation (C4) region. For the south-
eastern regions of India, we observe a significant synchro-
nization at the decadal scale (8–16 years) which is counter-
intuitive given the interannual timescale of ENSO (D’Arrigo,
2005; McGregor et al., 2013). The analysis based on WCA
(Fig. 6a) shows substantially less correlation between precip-
itation and ENSO in all regions.

Overall, the association between ENSO and precipitation
at the interannual scale is coherent with the general under-
standing that extreme precipitation in India is associated with
ENSO (Rajeevan and Pai, 2007). Additionally, our analy-
sis reveals the important spatial variation of this linkage
across India, which has not yet been reported before. We find
stronger linkages for the regions close to the ocean (south-
eastern peninsular comprising C1 to C4) compared to the in-
land regions with higher elevation (north-western India com-
prising C5 and C7). The results mentioned above are in con-
gruence with the findings by Guhathakurta et al. (2017) and
Mishra et al. (2012). The spatial heterogeneity in the strength
of the relationship between ENSO and precipitation may be
a result of the tropical convection during the ENSO events
(Bansod, 2011). Other studies have confirmed that there is a
decrease in the strength of the relationship between precipita-
tion and ENSO events with distance from the ocean. A sim-
ilar pattern is observed in Mexico where the Niño 3.4 tele-
connection is weaker, if not opposite in sign, in northern ver-
sus southern Mexico (Hu and Feng, 2002). This observation
leads us to the understanding that the ENSO teleconnection
is strong in regions of climatologically strong convection.

Interestingly, an association between ENSO and precipita-
tion at the decadal scale has not been reported for India so far.
This association might be a consequence of the interdepen-
dencies between ENSO and IOD at the decadal scale (Luo et
al., 2010). Recently, Izumo et al. (2010), demonstrated that
IOD events tend to not only co-occur with ENSO events, but
also to lead them through tropospheric biennial oscillation
(Pillai and Mohankumar, 2010). MSES has the potential to
capture such interdependencies when applied directly to such
indices. However, this is beyond the scope of the study.

The synchronization and coherence between the Indian
Ocean Dipole (IOD) and precipitation are given in Figs. 5b
and 6b, respectively. The non-linear dependence measure
points to a significant synchronization at timescales of 8–
16 years in the south-eastern regions C1–C4. The rest of the
country seems to be unaffected by IOD. The WCA analysis
obtains a similar spatial pattern; however, the significant as-
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Figure 4. Spatial distribution/extent of the seven regions, or communities, with similar heavy precipitation event characteristics across India.
Black dots indicate the representative grid cells for each of the community identified using the Z−P space approach. Terrain characteristics
of the Indian subcontinent are shown using the SRTM DEM (in the background).

sociations occur at shorter timescales (1–4 years, Fig. 6b). In-
terestingly, with both methods, we cannot find any coupling
with the Himalayan region (C7).

The results obtained by MSES and WCA are in accor-
dance with the general understanding that IOD plays a vital
role in the Indian monsoon system in the south-eastern re-
gions, i.e. in close proximity to the Indian Ocean, at interan-
nual and decadal scales (Krishnan and Swapna, 2009). This
result can be explained by the fact that two of the general
conditions for Indian precipitation are the Tropical Easterly
Jet and Tropical Westerly Jet (Rai and Dimri, 2017). In the
case of occurrence of IOD, the pressure dipole generated be-
tween the Tibetan Plateau and Madagascar either strengthens
the south-eastern Indian monsoon (positive IOD) or weakens
it (negative IOD) (Jiang and Ting, 2017). However, the rea-

son for the association at the decadal scale is not apparent
and needs further investigation.

Unlike IOD, NAO demonstrates significant synchro-
nization with precipitation across the entire subcontinent
(Fig. 5c). The linkages to the northern regions C4, C5 and
C7 are strong and significant at interannual and decadal
scales, whereas the southern regions C1, C2, C3 and C6 show
weaker linkages. Overall, the strength of synchronization be-
tween NAO and Indian extreme precipitation is higher at the
decadal scale than at the interannual scales. The compari-
son of the results obtained by MSES (Fig. 5c) and WCA
(Fig. 6c) reveals that the non-linear method shows an in-
crease in the association, particularly in the north-eastern
Himalayan foothill region (C4). For some regions, MSES
detects linkages which are not found by WCA. For exam-
ple, in the Himalayan region (C7), MSES shows a signifi-
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Figure 5. Multiscale event synchronization (MSES) between precipitation and climate indices. From top to bottom: Niño 3.4, IOD, NAO,
PDO, and AMO. From left to right: community 1 to community 7. MSES values are shown as solid lines, and significant connections (at the
95 % significance level) are marked in grey.
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Figure 6. Global wavelet coherence (GWC) between precipitation and climate indices. Top to bottom: Niño 3.4, IOD, NAO, PDO, and AMO.
From left to right: community 1 to community 7. WCA values are shown as solid lines, and significant connections (at the 95 % significance
level) are marked in grey.
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Figure 7. Schematic map of spatial diversity of Indian precipitation teleconnections at different timescales. (a) Niño 3.4, (b) IOD, (c) NAO,
(d) PDO, and (e) AMO. Colours are consistent with the community shown in Fig. 4. Presence of colour (irrespective of magnitude of
synchronization) in the community segment indicates significant synchronization between teleconnection and Indian precipitation. Every
single segment of circle shows the temporal scale. The cardinal direction has been projected in the background of each circle.

cant association at timescales of 4–16 years, whereas WCA
shows only a signal just at the significance level at the scale
of 16 years. The overall MSES results are in congruence
with other studies (Bhatla et al., 2016; Feliks et al., 2013;
Goswami et al., 2006), but so far space and scale variation in
the associations between NAO and Indian precipitation has
not gained attention. The linkages between precipitation and
NAO in the northern part of the country might be due to west-
erly influences from the Eurasian region which are, in turn,
strongly affected by NAO. Another explanation (Goswami et
al., 2006) suggests that the linkage of NAO and Indian pre-
cipitation at higher scales (decadal and beyond) in the north-
ern part of India results from the interdependency of NAO
and AMO.

In the case of PDO, we infer a robust decadal synchroniza-
tion across the entire subcontinent (Fig. 5d). The strength of
synchronization varies in space and reaches values of around
0.7 for several regions. By contrast, WCA (Fig. 6d) does
not reveal significant associations at the decadal scale except
for the eastern coastline (C1) and Himalayan foothills (C4),
where values at the boundary with significance are found.

The MSES results agree with Krishnan and Sugi (2003),
who demonstrate a strong relationship between PDO and pre-
cipitation across the country. The interannual synchroniza-
tion might be an indirect influence because of the interdepen-
dency of PDO and ENSO (Krishnan and Sugi, 2003; Rathi-
nasamy et al., 2014).

The highest strength of synchronization between AMO
and Indian precipitation is observed in the north-western and
central regions C3 to C6 (Fig. 5e). Weaker associations are
detected in the south (C1, C2), whereas no significant syn-
chronization is found for the Himalayan region (C7). The
linkages are most prominent at the decadal scale; in some re-
gions significant synchronization at interannual scales is also
found. In contrast, WCA shows only weak linkages (Fig. 6e).

Our MSES results confirm the assertion made by Zhang
and Delworth (2005), who found an in-phase relationship be-
tween Indian precipitation and AMO. A study by Goswami
et al. (2006) also unravelled a link between AMO and mul-
tidecadal variability of Indian precipitation. However, our
study is the first to observe that the strength of the coupling
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between AMO and precipitation varies according to the dif-
ferent climate regions and is strongest at the decadal scale.

In summary, our findings re-confirm known physics-based
associations, thus implicitly affirming the validity of our ap-
proach, but also provide new insights into Indian precipi-
tation teleconnections. We find substantial spatial variation
in the significant linkages across India and for different
timescales (Fig. 7). MSES reveals an appreciable increase
in the association between climate patterns and precipita-
tion in most regions when compared to WCA. In some re-
gions, the synchronization values increase by 40 %–50 %.
The much higher skill of MSES in detecting associations
suggests the presence of non-linear and threshold relation-
ships which cannot be captured by WCA, which is limited to
linear processes.

5 Conclusions

A novel non-linear, multiscale approach (MSES) based on
wavelets and event synchronization is used for unravelling
teleconnection influences on the Indian climate network at
multiple timescales. The analysis considers those climate
patterns with the highest relevance for Indian precipitation.
To understand the spatial heterogeneity, India is sub-divided
into homogeneous regions using complex networks. The
comparison with wavelet coherence analysis (WCA), the
state-of-the-art method in understanding linkages at different
timescales, shows a much higher skill for MSES in detecting
linkages between climate indices and precipitation. This sug-
gests that there are significant non-linear linkages which are
not well captured by linear approaches such as WCA.

The application of MSES to the homogeneous regions, ob-
tained using a complex network approach, allows the spatial
diversity in the teleconnection patterns over India to be un-
ravelled. ENSO has a strong influence on precipitation in the
south-eastern parts of the country. These regions are also af-
fected by IOD; however, the IOD influence is much weaker
compared to ENSO. NAO has a strong connection to extreme
precipitation, particularly in the northern regions. The effect
of PDO stretches across the whole country, whereas AMO
influences precipitation particularly in the arid and semi-arid
regions. The substantial variation in precipitation teleconnec-
tions across India and across timescales that is unravelled
by the proposed method provides an exciting perspective for
rainfall forecasting for India and for making better sense of
its weather.
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