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ABSTRACT

Intrinsic predictability is imperative to quantify inherent information contained in a time series and assists in evaluating the performance
of different forecasting methods to get the best possible prediction. Model forecasting performance is the measure of the probability of
success. Nevertheless, model performance or the model does not provide understanding for improvement in prediction. Intuitively, intrinsic
predictability delivers the highest level of predictability for a time series and informative in unfolding whether the system is unpredictable
or the chosen model is a poor choice. We introduce a novel measure, the Wavelet Entropy Energy Measure (WEEM), based on wavelet
transformation and information entropy for quantification of intrinsic predictability of time series. To investigate the efficiency and reliability
of the proposed measure, model forecast performance was evaluated via a wavelet networks approach. The proposed measure uses the wavelet
energy distribution of a time series at different scales and compares it with the wavelet energy distribution of white noise to quantify a time
series as deterministic or random. We test the WEEM using a wide variety of time series ranging from deterministic, non-stationary, and
ones contaminated with white noise with different noise-signal ratios. Furthermore, a relationship is developed between the WEEM and
Nash–Sutcliffe Efficiency, one of the widely known measures of forecast performance. The reliability of WEEM is demonstrated by exploring
the relationship to logistic map and real-world data.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5145005

This study explores the application of wavelet energy
function and entropy for possible quantification of intrinsic
predictability of a time series in terms of the Wavelet Energy
Entropy Measure. One of the advantages of the proposed mea-
sure is that it considers the dynamics of the process spread
across different time scales, which other similarity measures
of predictability have not considered explicitly. Furthermore,
the proposed measure is linked to forecasting performances.
The proposed measure can be used for estimating the intrin-
sic predictability of a time series, understanding the capabil-
ity of models in capturing the underlying system, and among
others.

I. INTRODUCTION

Time series predictability is a measure of how well future values
of a time series can be forecasted,1 where a time series is a sequence
of observations {Xt, t = 1, 2, 3, . . . , N}. A time series generated by
a deterministic process has high predictability, and its future val-
ues can be forecasted very well from its past values. However, the
one by an uncorrelated stochastic process has low predictability,
and its past values provide only a statistical characterization of
the future values.2 According to Pennekamp et al., predictability
can be classified into realized (achieved predictability of a system
from a given forecasting model) and intrinsic (maximum achievable
predictability of a system4) predictability.3 The former indicates the
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forecast performance of models and is generally quantified as the
correlation coefficient among predicted and observed values or its
complement error measures such as Nash–Sutcliffe Efficiency. Dif-
ferent models will provide different levels of realized predictability
and just from the realized predictability, it is impossible to say
whether the system is complex or the model is a poor choice. By con-
trast, the intrinsic predictability of a time series (or the underlying
system) is an absolute measure that represents the highest achievable
predictability.1,4 For instance, a time series having a complete predic-
tive structure has high intrinsic predictability. Periodic and constant
signals fall in this category. On the contrary, a fully complex signal
(e.g., white noise) that is generated by an uncorrelated process has
no intrinsic predictability and attains low forecasting performance
for deterministic chaotic processes with low correlation (e.g., logistic
map for certain parameters).

Generally, the intrinsic predictability can be measured using
model-free measures of time series complexity. Some of these
measures include Lyapunov exponents,5 recurrence measures,6–8

network measures,64 and information entropic measures.9,10 Com-
paratively, entropic measures have received more popularity owing
to its simplicity in calculating the intrinsic predictability, in
particular within the fields of human mobility,11 stock price
returns,12 patient health records,13,14 and also in nonlinear climatic
systems.15–19 The range of entropy varies from highest for a white
noise process and to lowest in case of the deterministic chaotic
processes (e.g., logistic map for certain parameters).20,21

Indeed, entropy measures have contributed significantly to our
existing knowledge on time series predictability. Still, there is a
substantial scope of advancement, in particular, while considering
the underlying system whose dynamics are spread over different
time scales. In such systems, it is entirely plausible that determin-
istic features present at a specific scale might be concealed while
examining the process at a different time scale. Doss-Gollin et al.
stressed the necessity of considering the multiscale dynamics across
different time scales for robust adaptation.21 Maheswaran and Khosa
emphasized the need for multiple-scale analysis for effective fore-
casting of hydrological processes.22 According to Barrat et al.,
specific climate-related processes are highly complex due to the
scale-emergent occurrences owing to the nonlinear dynamic pro-
cess and long-memory temporal connections.23 These studies and
several others24–28 indicate the presence of features of multiple time
scale phenomena, and these often get camouflaged in the observed
time series. Li and Zhang showed that the traditional measures based
on entropy fail to estimate the predictability at multiple time scales.29

In recent decades, the Wavelet transform is competent in com-
prehending multiscale dynamical processes across time scales.25,30

With the capability to enable multi-scale resolution and frequency
localization in time, wavelets offer the advantage of facilitating
the decomposition of the given time series into its various, but
scale-specific, dynamic components as proxies of the corresponding
physical processes at those scales.31 Numerous wavelet applications
in terms of wavelet energy via global power spectrum have been
reported in the recent past and widespread in the fields of hydrologic
regionalization,32 climate downscaling,33 dynamical systems,62,63 and
complexity of time series.19,20,34–36

In this study, we combine wavelet and information entropy to
propose a novel measure called Wavelet Entropy Energy measure

(WEEM). The proposed measure is validated using a set of con-
structed signals ranging from white noise to deterministic processes.
Furthermore, we connect WEEM to well-known forecast measure
(Nash–Sutcliffe Criteria) using a state-of-the-art forecasting model
based on Wavelet Neural Networks. This link between intrinsic
predictability and realized predictability helps in comparing the
intrinsic predictability of different systems and provides a guideline
on model selection. To test the strength of the relationship, we apply
it to logistic map time series and 4500 real-world rainfall time series
of the Indian subcontinent. We select monsoon rainfall since it is
one of the most critical climate element affecting the livelihood and
wellbeing of the society. The variability, strength, onset, and with-
drawal of monsoonal rainfall have an enormous effect on Indian
agriculture, economy, life, and prosperity of the inhabitants of the
Indian subcontinent. Consequently, understanding the mechanisms
of the Indian monsoon and its successful forecasting is not only
a question of great scientific interest but also a significant societal
challenge.

The remainder of the paper is organized as follows: Section II
describes the development of the proposed measure, and Sec. III
introduces the selected model signals and real-time series. The
results are discussed in Sec. IV. Our conclusions are summarized
in Sec. V.

II. METHODS

Here, we describe the methodology for the proposed WEEM.
Here, we combine two already well-established approaches, infor-
mation entropy and continuous wavelet transform (CWT), to quan-
tify the time series predictability. The following sub-sections briefly
introduce Information entropy and wavelets and subsequently pro-
vide the mathematical framework for WEEM.

A. Information entropy

The Information entropy originally proposed by Shannon37 is
described as

IE(X) = −
∑N

i=1
P(xi)log2[P(xi)], (1)

where X = {x1, x2, x3, x4, . . . XN} is the sample space with all possi-
ble states; P(xi) is the probability of occurrence of the random event
xi; 0 ≤ P(xi) ≤ 1;

∑N
i=1 P(xi) = 1; −log2P(xi) is the information of

uncertainty about the event xi occurring with P(xi); IE(X) is the
entropy of X in bits; and N is the number of states. Entropy is an
outcome of the process of a random variable, which can address the
uncertainty of the system by giving information about the random
variable.38,39 The entropy concept is equally valid for determinis-
tic and stochastic processes.20,40 In general, higher entropy indicates
random systems. Therefore, white noise processes which are almost
unpredictable have the highest entropy.20,29

B. Wavelet transform

The wavelet transform is an expedient method for converting
a time series into a new form, which consists of inherent features
of the original time series.41 It is defined as the convolution of
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the signal with scaled, shifted versions of the wavelet function ψ.42

Generally, the wavelet transform can be classified into Continu-
ous Wavelet Transform (CWT) and Discrete Wavelet Transform.
In this study, we use CWT to quantify the intrinsic predictability.
The mathematical representation of CWT is as follows:

WT(α, q) =
1

√
α

∫ ∞

−∞
x(t)ψ̂

(

t − q

α

)

dt with

ψ(t) =
1

π
1
4

(

ei2πfo.t
)

e
−t2

2 ,

(2)

where fo is the central frequency of the morlet wavelet; α and q are

scale and translation parameters; and ψ̂(t) is the complex conjugate
of the wavelet function ψ(t).

The wavelet transform as defined by Eq. (2) is a CWT because
the scale and time parameters, α and q, assume continuous values.
It provides a redundant representation of a signal as the CWT of
a function at scale “α” and location “q” can be obtained from the
CWT of the same function at other scales and locations. Since the
CWT acts as an orthonormal basis decomposition, it can be shown
that it is also isometric as it preserves the overall energy content of
the signal and, thereby, allowing recovery of the function x(t) from
its transform by using the following reconstruction formula:41

x(t) =
1

Cw

∫ ∞

0

[
∫ ∞

−∞

∣

∣WT(α, q)
∣

∣

2
ψ(α,q)(t)dq

]

dα

α2
, (3)

where cw is a constant depending on the type of the mother wavelet.
The scale-wise energy E(α) of the signal x(t) can be represented
under level α as

E(α) =
∫ ∞

−∞
[x(t)]2dt =

1

Cw

∫ ∞

0

[
∫ ∞

−∞

∣

∣W(α, q)
∣

∣

2
dq

]

dα

α2
. (4)

The left-hand side of the above equation is the energy of the
signal x(t).41 We can, thus, interpret |W(α, q)|2dq as being propor-
tional to an energy density function that decomposes the energy in
x(t) across different scales and times. If |W(α, q)|2dq is large (small),
we can say that there is an important (insignificant) contribution to
the energy in x(t) at scale α and time q. For a white noise process,
the energy distribution is uniform across scales, and the entropy of
the energy distribution will be maximum. On the other hand, for
a deterministic distribution, the entire energy gets concentrated to
one scale, and we obtain minimum entropy.

C. Wavelet energy entropy measure (WEEM)

To measure the energy distribution of a time series, using
Morlet60,61 as the mother wavelet, the wavelet coefficients W(α, q)
can be obtained from Eq. (2). Once the wavelet coefficients are
obtained, the wavelet energy (E(t, α)) under time position t and scale
α is computed as per Eq. (4) across each scale. The total wavelet
energy upto scale n is calculated as TE =

∑n
α=1 E(α). From the

wavelet energy distribution across all the scales α = 1, 2, 3, . . . , n,
the probability density function is calculated as P(α) = E(α)

∑n
α=1 E(α)

.

From the likelihood of each level, the continuous wavelet entropy

for the time series is calculated as

CWE = −
E(α)

∑n
α=1 E(α)

log2
E(α)

∑n
α=1 E(α)

. (5)

For quantification of the intrinsic predictability, we consider a refer-
ence process having maximum entropy with no predictive informa-
tion. Hence, the white noise process is viewed as a reference process
due to its scattered energy distribution across all scales. It is highly
unpredictable compared to any other processes in space and time
and has the highest entropy.20 In the present study, as per Sang et al.,
we generate white noise time series with the same length of original
time series having mean of original time series and standard devi-
ation of unity.20 Continuous wavelet entropy for white noise time
series can be calculated using Eq. (5).

Finally, the Wavelet Energy Entropy Measure (WEEM) is pro-
posed as

WEEM =
2CWER−2CWEO

2CWER
, (6)

where CWEO and CWER are the continous wavelet entropy of the
original time series and white noise series, respectively. The value
of WEEM ranges from 0 to 1. If WEEM is nearer to one, then the
time series has high intrinsic predictability, and this is due to the
entire energy gets concentrated to few scales. In contrary, if WEEM
is near to zero, the time series has a scattered distribution of wavelet
energy almost similar to that of a white noise process and has a very
low intrinsic predictability. The schematic of the calculation of the
WEEM is shown in Fig. 1.

D. Forecasting with Wavelet Neural Networks

For estimating the forecasting error or the realized predictabil-
ity, we use a state-of-the-art forecasting model Wavelet Neural
Networks (WNNs), which has been tested for its reliability in several
studies. WNN is a coupled model combining wavelet analysis and
artificial neural networks. WNNs have outperformed stand-alone
models like artificial neural networks, multiple linear regression,
and autoregressive approach and proved to be robust in forecasting
various fields of geophysical variables.43,44 The neural network uses
the detailed components of time series as inputs and picks up the
underlying variability in the time series at different scales;32,33 minute
details are well captured.44 For the wavelet analysis, we have chosen
a prominent and straightforward db4 wavelet, and the time series
is decomposed up to ten levels following the procedure outlined in
Ref. 31. For more details on wavelet analysis and selection of suitable
mother wavelet, the readers are referred to Ref. 31. For the simu-
lation of neural networks, we have used the Levenberg–Marquardt
algorithm to train the Neural Network model because it is fast,
accurate, and reliable.44,45 In addition, several studies show that the
algorithm is robust in terms of statistical significance and processing
flexibility.46,47 The model is initially trained for 70 percentage of the
data by providing both input and target to the model. In this proce-
dure, the model understands the relationship between the predictor
and predictand. The model is trained until the results are convergent
within the desirable limits of high accuracy and less error compo-
nents. Then in case of validation, only the inputs, i.e., the remaining
30 percent of data, are provided to the created network and tested
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FIG. 1. Development of the WEEM. Step-1 generation of a white noise time series similar to the data length of the original signal with zero mean and unit standard deviation.
Step-2 obtains wavelet power spectrum for the original signal as well as for the white noise time series. The y axis in the figure represents the wavelet scale, and the x axis
is time (unit). Compute the global wavelet spectrum from the wavelet spectrum at each scale. Calculate the total energy at every scale p. Step-3 calculation of continuous
wavelet entropy from the global wavelet spectrum for the original signal (CWEO) as well as for the white noise time series (CWER). Step-4 from the obtained CWEO and
CWER compute the proposed measure WEEM.

to simulate the respective predictand with same amounts of accu-
racies as of training stage. The optimal number of hidden neurons
for each of the model was found using the trial and error proce-
dure. The number of hidden neurons was varied from 10 to 20, and
the best value was chosen based on the RMSE.48 See text S2 in the
supplementary material for further detailed description of WNNs.

1. Assessment of forecasting performance

In the present study, we first quantify the forecasting perfor-
mance of WNNs using Nash–Sutcliffe Efficiency (NSE),49

NSE = 1 −

[
∑p

j=1 (Xobs
j − Xsim

j )
2

∑p
j=1 (Xobs

j − Xmean
j )

2

]

, (7)

where Xobs
j is the jth observation of the original time series being

estimated, Xsim
j is the jth simulated value for the original time series

being estimated, Xmean
j is the mean of the original time series for the

constituent being evaluated, and p is the number of observations.
The range of NSE varies from −∞, i.e., high forecasting error, to 1,
i.e., zero forecasting error.

III. DATA AND STUDY DESIGN TO TEST WEEM

The datasets used in this study consist of constructed signals
with predefined properties and real-world data. In the first part, we
attempt to develop a relationship between NSE and WEEM using
model signals. Furthermore, this relationship is tested using the
logistic map and real-world data. These tests aim to understand the
performance of WEEM in quantifying the intrinsic predictability of
linear and non-linear processes.

A. Constructed signals with predefined properties
data for the establishment of the relationship
between WEEM and NSE

For developing a relationship between the intrinsic predictabil-
ity and forecast performance, following the approach of Agarwal
et al. and DelSole, we generate several varieties of constructed signals
ranging from deterministic, non-stationary to stochastic.30,50 The
details of the case studies and the wavelet power spectra are given
in Table I and Fig. 2, respectively. See text S1 in the supplementary
material for the procedure of constructed signals.

B. Case I: Deterministic time series

A single constructed signal is generated following the approach
of Agarwal et al. to know the behavior of WEEM for a complete
deterministic time series without the presence of noise.30 Figure 2
(panel I) shows the CWT of the signal, and it can be seen that the
energy is getting concentrated in a few number of scales.

C. Case II: Non-stationary time series

Following the approach of Agarwal et al., a non-stationary
time series encompassing five sine waves with different frequencies
(z1–z5) is considered.30 This time series possess features that are
frequently found in climate and geophysical data, where high fre-
quency, small-scale processes are superimposed on low-frequency,
coarse-scale processes.51 Figure 2 (panel II) show the CWT of this
time series, and it can be seen that the energy is scattered to more
number of scales.
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TABLE I. Details of constructed signals with predefined properties. The data are in three categories, i.e., signals with physical characteristics of (I) stationary signal,
(II) non-stationary signal, and (III) stationary signal contaminated with white noise.

Case Mathematical expression Other details Reference

I Sinusoidal stationary signal
S1 = S

S = sin(2π t/16),
where t = 1, 2, 3, . . . , 40 000

Agarwal et al.30

II Non-stationary signal
S1 = z1 + z2 + z3 + z4 + z5

z1 = sin
(

500π
(

t
16

)0.5
)

z2 = sin
(

250π
(

t
16

)0.5
)

z3 = sin
(

125π
(

t
16

)0.5
)

z4 = sin
(

62.5π
(

t
16

)0.5
)

z5 = sin
(

31.25π
(

t
16

)0.5
)

where t = 0, 0.01, 0.02, . . . , 400

Agarwal et al.,30 Yan and Gao,52 and Hu and Si51

III Sinusoidal stationary signal
contaminated with white noise
S1 = S+ noise

signal
∼ 0.1

S2 = S+ noise
signal

∼ 0.2

S3 = S+ noise
signal

∼ 0.3
. . .
S200 = S+ noise

signal
∼ 20

S = sin(2π t/16), noise
signal

∼ n

where n = 0.1, 0.2, . . . , 20

DelSole50

D. Case III: Stochastic time series

Here, 200 sinusoidal stationary signals contaminated with
white noise are generated (see Table I) following the approach of
DelSole.50 Original time series is contaminated with the white noise
of varying noise-signal (N/S) ratios ranging from 0.1 to 20. The
purpose of Case III is to investigate the ability of the measure in
assessing the uncertainty of energy distribution across scales for a
contaminated time series with varying N/S ratios.

1. Testing WEEM with logistic map

Next, we investigate the proposed measure to the well-known
population model, the logistic map,

xn+1 = rxn(1 − xn). (8)

This model maps the future population size (xn+1) as a func-
tion of the past time step population size (Xn) in a discrete approach
showing a nonlinear phenomenon for growth rate r ∈ (1, 4). This
time series exhibits a wide range of dynamical behavior from fixed
point and oscillatory motion to chaotic behavior.3 A complete
description of the logistic map and its nonlinear transformation can
be found in Trulla et al.53 From the wide variety of nonlinear phe-
nomena, we selected the logistic map, especially in the interesting
range of growth rate r ∈ (3, 4) with a step width of ∆r = 0.0015.
We are, in particular, interested in the capability of the intrinsic pre-
dictability for laminar states in chaos–chaos transitions. Therefore,
for each r, we generate time series of the length with 2000 time steps.
The last 1000 time steps are only considered and first 1000 transients
are ignored for further analysis.

2. Testing WEEM with real-world data

We also applied the proposed measure to real-world data. For
this purpose, we considered 4500 daily rainfall time series, which are
extracted from the 0.25° × 0.25° gridded dataset developed by Pai et
al.,54 spread all over the Indian mainland. We have used 113 years of
daily rainfall from 1st January 1901 to 31st December 2013, which
is available at the National Climate Center of India Meteorological
Department. Data processing and quality control were performed
according to Rajeevan et al.55

IV. RESULTS

To quantify the intrinsic predictability, which can be expressed
in terms of the entropy of energy distribution of a time series, we
decompose the given time series up to n scales using the Morlet
wavelet. There are several other mother wavelets that could be used
for wavelet decomposition; however, it has been demonstrated that
the choice of the mother wavelets does not affect the results to a great
extent.25

For the case I, the measure is tested for the stationary sinusoidal
time series for 1000 times and the 95th percentile value of WEEM is
very close to 0.93 indicating that the spread of the energy distribu-
tion is confined to few scales, thereby less uncertainty and intrinsic
predictability is very high.

For case II, the wavelet power spectrum is plotted (see
Fig. 2, Panel II), and it describes the non-stationary phenomenon,
time-dependent features at higher scales 2 ≤ λ ≤ 6. In this par-
ticular case, WEEM ≈ 0.688. The spread of energy distribution
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FIG. 2. Wavelet power spectra of constructed signals (Table I). Panel I: sinusoidal stationary signal (S1) for case I; Panel II: non-stationary signal (S1) for case II. Panel III:
sinusoidal stationary signal contaminated with white noise of (a) N/S∼ 1 (S10) and (b) N/S∼ 10 (S100), respectively, for case-III; in all the panels, the y axis represents
the corresponding Fourier period = 2p, where p=wavelet scale and the x axis represents the time. The thick contour encircles spots of greater than 95% confidence for a
red-noise process (increasing power with decreasing frequency).

is not confined to a few scales. WEEM indicates that the uncer-
tainty of the energy distribution is larger than the case I, and
there is less scope for intrinsic predictability for non-stationary
signals.

For case III, the wavelet power spectrum for the deterministic
signal contaminated with white noise for two N/S ratios is shown
in Fig. 2, panel III. To construct a confidence interval for WEEM,
we generate 1000 white noise time series having zero mean and
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FIG. 3. WEEM as a function of the noise/signal ratio. The abscissa represents
the N/S ratio of 200 stationary contaminated with white noise scaled from 0.1 to
20. The range and average of WEEM for each N/S ratio are represented on the
ordinate.

standard deviation of unity. Then, each of the 1000 time series is
used as CWER in Eq. (6) to calculate the WEEMs for the given origi-
nal time series. The 95th percentile of these obtained 1000 WEEMs is
reported as the intrinsic predictability of time series, and 2.5th and
97.5th percentiles are used as the 95% confidence interval bound-
aries (see Fig. 3). As the ratio increases, the WEEM value decreases
with N/S and becomes zero for a ratio of 20. It indicates that the
spread of the energy distribution across various scales is similar to
a white noise process and the influence of noise is strong over the
deterministic component resulting in a substantial loss of informa-
tion. In contrary, if the ratio lies between 1 and 2, then the spread
of energy distribution is limited to few scales in addition to that the
influence of noise on energy concentration is also negligible. There-
fore, the intrinsic predictability of a time series will be very high due
to high deterministic feature conjunction with insignificant noise.
Figure 4 shows a trend of CWEO with 95th percentile WEEMs,
and it reveals that intrinsic predictability increases with a decrease
in CWEO.

FIG. 4. Scatterplot between 95th percentile of WEEM and its corresponding
CWEO. As the CWEO decreases, intrinsic predictability increases, and it becomes
one when CWEO is zero.

FIG. 5. Scatterplot between WEEM and NSE based on the obtained values of
WEEM, NSE from the forecasting model for 200 constructed signals as described
for case III in Fig. 2. The black line is the best fitted exponential equation for the
relationship betweenWEEM and NSE, where 98 percentile of the variance of NSE
can be explained using WEEM.

A. Relationship between intrinsic predictability and
forecasting performance

Even though WEEM enables quantification of the intrinsic
predictability, for practical application, it needs to be linked to the
forecasting performance or realized predictability.3 For this purpose,
the above 200 constructed signals were simulated using the robust
WNN’s model (see Appendix S1 in the supplementary material), and
the forecast performance was estimated for each of the time series.
Figure 5 shows the scatterplot between the WEEM and NSE val-
ues and the corresponding regression relationship. There exists an
exponential relationship between the forecasting performance and
the WEEM.

The best-fit equation

NSE = 0.001e7.1832(WEEM) (9)

with the coefficient of determination (R2) ≈ 0.98 was found to cap-
ture the relationship between forecasting performance and WEEM.
With the above linkage, the interpretation of WEEM becomes more
apparent and more comparable.

B. Reliability assessment of WEEM with logistic map

To demonstrate the reliability of (i) WEEM in handling nonlin-
ear complex systems and (ii) the relationship between WEEM and
NSE, we have used the logistic map. Figure 6(a) shows the nonlin-
ear phenomenon of population change from a predictable mode to
a chaotic one. The obtained WEEM for different r values is plotted
in Fig. 6(b). At r = 3.1, the system is in a periodic regime, and future
values will be taking only two values and as r increases a bifurcation
takes from original two values into four and so on until r reaches 3.6.
Between r = 3.1 and 3.56995, the system is completely predictable
and the WEEM values are almost 1, disclosing that the system in
that window has high intrinsic predictability. As the growth rate
increases to 3.7, nonlinear phenomena unveil a rapid transition from
complete deterministic to chaotic behavior, and at r = 4, the time
series has the highest level of complexity with almost no intrinsic
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FIG. 6. Overview of the reliability of the WEEM.
(a) We applied WEEM to time series from a
well-known population dynamic model, the logistic
map, and the image shows the nonlinear phe-
nomenon of population change on ordinate for a
growth rate (r) between 3 and 4 on the abscissa.
When r is in between 3 and 3.56995, the system
will be in the periodic regime and will be completely
predictable. As r reaches 3.56995, the system
changes to chaotic dynamics, and it becomes less
and less predictable until r reaches 4. (b) WEEM
against r values. The abscissa represents r val-
ues from 3 to 4, and the obtained WEEM value is
presented on the ordinate. When r is in between
3 and 3.56995, the WEEM is close to 1, the sys-
tem is predictable and interpretation is convergent
with the logistic map. (c) Validation of the proposed
relationship between NSE and WEEM for differ-
ent r values and the possible NSE values were
estimated using the relationship, and the actual
NSE values obtained from model prediction are
presented in red and black lines.

predictability. For r = 3.7 to 4, the WEEM value gradually decreases,
indicating that the possibility of getting future values based on the
past data is extremely low and has a very low intrinsic predictability
due to chaotic behavior. NSE values are estimated using the relation-
ship NSE = 0.001e7.1832(WEEM), and the real forecasting performance
NSE was obtained from the simulation of WNNs. Figure 6(c) rep-
resents the estimated and obtained NSE values with red and black
lines, respectively. The plot shows that the proposed linkage between
NSE and WEEM is robust and reliable and is comparable with NSE
obtained from the WNN model. As a corollary, this also shows
the strength of WEEM in capturing the intrinsic predictability of
periodic windows also partially visible.

C. Application and assessment of WEEM with
real-world data

After testing the efficiency of WEEM in quantifying the intrin-
sic predictability for some prototypical situations, we apply the
WEEM to real-world time series, i.e., observed daily rainfall in the
Indian subcontinent. The 95th percentile of WEEM values for all
the stations is obtained, and the spatial distribution of WEEM for the
Indian country is plotted in Fig. 7(a). The minimum value of WEEM
is 0.16, and the highest value is approximately equal to 0.78, delin-
eating the Indian country into six zones. The regions with blue color
revealing a spread of dominant energy are concentrated only to a few
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FIG. 7. (a) Spatial distribution of the WEEM estimated using the proposed methodology for all the Indian rainfall time series. WEEM is ranging from a minimum of 0.16 to a
maximum of 0.78, and it is classified into six ranges. (b) Spatial distribution of the NSE estimated using the WNN model, and NSE is ranging from a minimum of 0.005 to a
maximum of 0.36, and it is classified into six ranges.

scales. For regions with yellow color, the spread of energy distribu-
tion is almost nearer to white noise process possessing a low intrinsic
predictability when compared to blue spots. The spread of energy to
a few scales could be because few external climatic processes govern
the rainfall process.

On the contrary, equal spread of energy to all scales signi-
fies strong influence of many external climatic variables making
predictability difficult. The corresponding forecasting performance

FIG. 8. Scatterplot between actual NSE (ordinate) from the model and the esti-
mated NSE (abscissa) obtained from Eq. (9) for all the Indian rainfall time series.
The black line is the best fitted linear equation for the relationship between two
scattered values.

using Eq. (9) shows that the NSE values were ranging from 0– to 0.31
indicating the low intrinsic predictability. The forecasting perfor-
mance obtained from the WNN reveals a similar kind of distribution
as that of intrinsic predictability [see Fig. 7(b)], and similar values
of forecasting performance are obtained by other studies such as
Refs. 56 and 57 for daily rainfall time series.

As a further step, we also validated the estimated forecasting
performance with those obtained from the WNN model. Figure 8
shows the plot between the NSE obtained using Eq. (9) and the
actual values got from the best of WNN models for all the time series.
The results reveal that the mean square error value is nearer to zero
and there is a close correlation between them, indicating the relia-
bility of the proposed WEEM and its linkage with the forecasting
performance. Further, this study also shows that the intrinsic pre-
dictability of rainfall is varying with space owing to different physical
phenomena that are beyond the scope of the present study.

V. DISCUSSION

Overall, the above set of cases and analysis showed the effi-
ciency of the WEEM and its linkage between forecasting perfor-
mances. From the constructed signals with predefined properties,
it was observed that the intrinsic predictability is more for N/S ≤
2 and gradually decreases for N/S ≥ 2.5 due to the influence of
noise. Investigation of WEEM for the logistic map illustrated the
sensitivity of WEEM to changes in the r parameter. The proposed
WEEM could capture the nature of the system for different r val-
ues, thus showing the applicability of the WEEM to nonlinear time
series.
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Further, a real-world study shows that the Indian rainfall cli-
matic system has varying intrinsic predictabilities. This finding is
in line of agreement with the findings of Refs. 57–59. One of the
advantages of the proposed measure is that it considers the dynam-
ics of the process spread across different time scales, which other
similarity measures of predictability have not considered explicitly.
Furthermore, the proposed measure is linked to forecasting perfor-
mances. Association of all the available forecasting techniques with
WEEM and its linkage with model forecasting performance can lead
to improvement in realized predictability.10,40 Besides, monitoring
intrinsic and realized predictability will help in improving the pre-
diction accuracy of the model. To do so, all the existing forecasting
techniques must be applied to the same time series and measure the
realized predictability in conjunction with intrinsic predictability of
time series. The proposed measure can be used for estimating the
intrinsic predictability of a time series, understanding the capability
of models in capturing the underlying system and among others. In
addition to that, the proposed WEEM measure is normalized, han-
dles non-stationarity, and is independent of the length of the data.
Therefore, the temporal evolution of the intrinsic predictability can
be studied and can provide vital information for change-detection
studies.

VI. CONCLUSIONS

In this study, we have proposed a novel measure that combines
wavelet analysis and entropy to quantify the intrinsic predictability
of a time series. The proposed measure compares the entropy of the
wavelet energy distribution of the given time series with the refer-
ence white noise process. We have also developed linkage between
the proposed measure, WEEM with the popular forecasting perfor-
mance, and NSE. Using several constructed signals with predefined
properties and logistic map model, we have shown that the proposed
methodology can capture intrinsic predictability. With the help of
the state of the art WNN models, we have also tested the strength
of the WEEM–NSE linkage on real-world rainfall time series. The
results from the study indicate that the proposed measure can be
used as another reliable measure of intrinsic predictability. Thus,
WEEM provides an important indicator of the maximum achiev-
able predictability of the time series, which in turn can be applied
to specify whether the model is limiting predictability of the system.
Therefore, it can help in improving the model. Further studies can
be directed toward the application of datasets from diverse areas to
strengthen the effectiveness of the proposed approach.

SUPPLEMENTARY MATERIAL

See the supplementary material that comprehends two sections.
Section 1 includes a brief description of the construction proce-
dures of constructed signals for three cases, and section 2 includes
a detailed description of wavelet neural networks.
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