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Abstract – We present a novel and an efficient way to mitigate oscillatory instability in turbulent
reactive flows. First, we construct weighted spatial correlation networks from the velocity field
obtained from high-speed particle image velocimetry. Using network measures, we identify the op-
timal location for implementing passive control strategies. By injecting micro-jets at this optimal
location, we are able to reduce the amplitude of the pressure oscillations to a value comparable
to what is observed during the state of stable operation. This approach opens up new avenues to
control oscillatory instabilities in turbulent flows.

Copyright c⃝ EPLA, 2019

Introduction. – Half a century ago, Neil Armstrong
would not have landed on the Moon on July 20, 1969
if the Apollo engineers did not come up with a solution
to the problem of thermoacoustic instability. This is re-
flected in the words of Saverio “Sonny” F. Morea, the
F1 engine project director1 : “Combustion instability was
one of the biggest challenges of the Apollo programme.
If we didn’t come up with a solution, we weren’t going
to the Moon”. Thermoacoustic instability, also known
as combustion instability, refers to the phenomenon of
spontaneous excitation of large-amplitude periodic acous-
tic pressure oscillations in confinements such as boilers,
rocket motors and gas turbines engines [1]. Thermoacous-
tic instability occurs due to the positive feedback between
the unsteady heat release rate fluctuations from the flame
and the acoustic pressure fluctuations inside the confine-
ment [2]. As the acoustic driving overcomes the damp-
ing, the amplitude of the pressure fluctuation increases
and saturates at large-amplitude limit cycle oscillations.
These large-amplitude limit cycle oscillations often lead

1The quote is taken from an image showing the F1 en-
gine injector baffle, which is displayed at the U.S. Space and
Rocket Center, Huntsville, AL (http://heroicrelics.org/ussrc/
engines-f-1-injector-baffle/dsc79618.jpg.html).

to a sudden failure of engine components and associated
electronics, increased heat transfer that overwhelms the
thermal protection system and in some cases even mission
failures [3].

Control of thermoacoustic instability has attracted the
attention of various researchers. There are mainly two
approaches to control this oscillatory instability —active
and passive. i) Active control measures include the use
of actuators such as loudspeakers and oscillatory air/fuel
injection [4]. Even though active control approaches are
successful over a wide range of frequencies, the practical
implementation of these methods adds complexity to the
system as they involve the use of electro-mechanical com-
ponents. ii) In contrast, passive control measures involve
simple geometrical modifications, such as the use of acous-
tic liners, baffles, Helmholtz resonators, modification of
the fuel injector geometry/location or the use of micro-jet
injection [5]. Since passive control approaches are sim-
ple and robust, they have found applications in various
practical systems. However, there is one major drawback
associated with these passive control approaches. These
are based on lots of trials, which are mostly a hit-or-miss
approach. The engineers of the Apollo programme had to
perform around 3200 full-scale tests, probably the most

14003-p1

http://heroicrelics.org/ussrc/engines-f-1-injector-baffle/dsc79618.jpg.html
http://heroicrelics.org/ussrc/engines-f-1-injector-baffle/dsc79618.jpg.html


Abin Krishnan et al.

intensive and expensive programme ever devoted to solv-
ing the problem of thermoacoustic instability, to arrive at
a stable liquid rocket motor configuration for the lunar
mission [6]. Thus, the control of thermoacoustic instabil-
ity in practical systems is still a very challenging problem.

We could drastically improve the effectiveness of passive
control measures if we are able to determine the optimal
location for their implementation. One such optimal lo-
cation is the region in the flow field that controls the spa-
tiotemporal dynamics during thermoacoustic instability.
We refer to this optimal location as the “critical region”.
Then, the question arises:“how to identify it?”

In this letter, we show that a complex network approach
provides an efficient way for the identification of the crit-
ical region. Complex network theory has emerged as one
of the most efficient tools for the analysis of diverse sys-
tems [7–10]. In network theory, the nodes of the network
represent the system components and the links represent
the interactions between them. High values of network
measures such as degree, closeness centrality, betweenness
centrality, to name a few, help to identify the critical nodes
of the network [11,12]. These network measures have been
used to uncover spatial patterns in brain networks [13–15],
climate networks [16–19] and fluid flows [20–22]. Also,
network measures have been used to suggest the optimal
location to control forest fires [23], the spread of mobile
malware [24] and turbulent flows [25]. Using spatial corre-
lation network analysis, we have recently characterized the
spatial dynamics of a turbulent combustor during stable
operation, thermoacoustic instability and the transition
regime from stable operation to thermoacoustic instabil-
ity known as intermittency [26]. We then postulated that
network analysis could be used to optimize the control of
oscillatory instability [27].

In the current study, we perform experiments in a
laboratory-scale bluff body stabilized turbulent combustor
with a backward facing step. Here, we construct weighted
spatial correlation networks from the velocity field ob-
tained from high-speed particle image velocimetry (PIV),
a laser-based optical diagnostic technique [28]. We un-
cover that the critical region identified by network analysis
is indeed the optimal location to implement passive control
measures, thus proving that complex networks provide a
novel and efficient way to control oscillatory instabilities.

Experimental setup. – The combustion chamber is
1100mm long and has a cross-section of 90 × 90mm2 . A
circular disk of 47mm diameter is used to stabilize the
flame (refer to appendix A of the supplemental material
Supplementarymaterial.pdf (SM) for more details). We
fix the fuel (liquefied petroleum gas) flow rate (ṁf = 30±
0.44 SLPM) and vary the air flow rate (480±7.84 ≤ ṁa ≤
780± 10.24 SLPM), thus decreasing the equivalence ratio
(φ = ( ṁf

ṁa
)actual/( ṁf

ṁa
)stochiometry) from 0.97 to 0.57; with

a maximum uncertainty of ±0.02 in φ. Accordingly, the
Reynolds number (Re) varies from 1.93×104 to 3.13×104

with a maximum uncertainty of ±400 (1.28%).

We measure the acoustic pressure fluctuations using a
piezoelectric transducer (with an uncertainty of ±0.15Pa),
located 20mm downstream of the backward facing step.
A pair of quartz windows (400 × 90 × 10mm3 ) is pro-
vided on the side walls of the combustion chamber
to facilitate optical diagnostic techniques such as high-
speed chemiluminescence and high-speed PIV. High-speed
chemiluminescence is used to capture the local heat release
rate fluctuations of the flame [29] and high-speed PIV [28]
is used to obtain the instantaneous velocity field in the
combustor (see appendix B of the SM for more details).

Identification of the critical region. – To iden-
tify the critical region, we first construct weighted spa-
tial correlation networks from the velocity field obtained
from high-speed PIV. Weighted correlation network anal-
ysis has been used extensively in biology [30–32] and fi-
nance [33,34]. In the analysis of PIV, we divide the
turbulent reactive flow field into a rectangular grid. We
regard the cells of this rectangular grid as the nodes
of the network. The connectivity between two nodes i
and j is based on the Pearson’s correlation coefficient
(−1 ≤ Rij ≤ 1) between the time series of total veloc-
ity (V (t) =

√
Vx(t)2 + Vy(t)2 ) at the two nodes, which is

calculated as

Rij =
⟨V (i, t)V (j, t)⟩ − ⟨V (i, t)⟩⟨V (j, t)⟩

σ(V (i))σ(V (j))
, (1)

where σ2 (V (i)) = ⟨V (i, t)2 ⟩ − ⟨V (i, t)⟩2 and ⟨·⟩ represents
the temporal average computed over 3500 samples corre-
sponding to a duration of 1.5 s. Two nodes are connected
if Rij ≥ 0.5. To capture the strength of the interaction
between the two locations, we consider Rij (≥0.5) as the
weight (wij) of the link; the higher the value of Rij , the
stronger the interaction between the two spatial locations
in the turbulent reactive flow field. In this manner, we con-
struct weighted spatial correlation networks for the three
dynamical states of the combustor operation namely, the
stable state, intermittency and thermoacoustic instability.

We use three network measures to characterize the im-
portance of a node in the network. First, the strength of
a node [9], which is given by

si =
N∑

j=1

wij , (2)

where N is the total number of nodes and wij is the weight
of the link between the nodes i and j. The number of nodes
(N) during the states of stable operation, intermittency
and thermoacoustic instability are 2835, 2835 and 2728,
respectively (refer to appendix B of the SM for further
details). A high value of si implies that the time series of
velocity at a given location is highly correlated with that
of different locations in the flow field. Second, we use the
weighted local clustering coefficient [35] to characterize the
strength of interaction among the neighbours of a node,
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which is given by

C̃i =
∑

j,k wijwjkwik

max(w)
∑

j,k wijwki
, (3)

where j, k are the neighbours of the node i; max(w) is
the maximum weight in the network. A node with a high
si and a high C̃i implies that the velocity variations at
the given node and among its neighbours are strongly
correlated. Hence, we can say that the neighbourhood
of the given node represents a spatially coherent velocity
field. Third, we use the weighted closeness centrality [36]
to identify the nodes in the network, which is closest to
all other nodes and hence can reach them quickly. It is
given by

c̃i =
N∑

j=1 ,j ̸=i

2−dw(i,j), (4)

where dw(i, j) is the least costly path between the nodes
i and j. Here, we consider a path as costly, when it con-
sumes more effort for a piece of information to travel from
a node i to another node j. Perturbations tend to reach all
other parts of the flow field quickly via highly correlated
paths. Hence, we consider the cost of a link as the inverse
of Rij . The higher the values of Rij for the paths from
a node to all other nodes, the lower the costs and hence
the quicker the disturbances reach all other nodes in the
network.

The spatial distributions of the weighted network prop-
erties, namely s (a), C̃ (b) and c̃ (c) during stable op-
eration, intermittency and thermoacoustic instability are
illustrated in fig. 1. The grey rectangular region in the
bottom right corner of the subplots is the bluff body.
The color bars gives the range of the respective network
properties. We observe very high values of s only during
thermoacoustic instability, near the backward facing step,
above the bluff body shaft. The node strength is two or-
ders of magnitude higher than that during the states of
stable operation and intermittency. This region also has
very high C̃. Hence, we can say that the velocity varia-
tions in the region are highly correlated among themselves
as we connect only those nodes where the correlation be-
tween the velocity variations is at least 50%. In other
words, the region near the backward facing step, above the
bluff body shaft, is spatially coherent regarding the veloc-
ity variation. High values of these network measures are
due to the periodic coherent motion of the flow at the com-
bustor inlet, which eventually self-organizes to form peri-
odic large-scale coherent structures during thermoacoustic
instability [37]. Also, we see that the above-mentioned re-
gion has high values of c̃. Hence, we can infer that any
perturbation given to the region above the bluff body shaft
will reach all other parts of the flow field quickly. From
the high values of the spatial distribution of these network
measures, we find that the region downstream of the back-
ward facing step, on top of the bluff body shaft, emerges
as the most critical region at the onset of thermoacoustic
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Fig. 1: The spatial distribution of the three weighted network
properties s (a), C̃ (b) and c̃ (c) during stable operation, in-
termittency and thermoacoustic instability, respectively. The
grey rectangular region in the bottom right corner of the sub-
plots is the mask used to cover the bluff body in the analysis
of PIV (it is to mask the laser light reflections from the bluff
body). The region above the bluff body shaft downstream of
the backward facing step emerges as the critical region at the
onset of thermoacoustic instability.

instability. We can thus hypothesize that any passive con-
trol strategies could be directed at this critical region to
mitigate thermoacoustic oscillations. The critical region
does not change much when the threshold correlation co-
efficient (Rt) is varied from 0.3 to 0.7 (refer to appendix
C of the SM).

Smart passive control. – In the present study, we
use air micro-jet injection as a passive control measure
to mitigate thermoacoustic oscillations. To this end, we
divide the flow field into three regions namely, region A
(upstream of the bluff body), region B (around the bluff
body) and region C (downstream of bluff body). Figure 2
shows the top half cross-section of the combustor with the
three regions A, B and C along with the micro-jet injection
ports. Region A has a pair of ports at the backward facing
step, inclined at an angle (60◦) such that the micro-jets
target the critical region identified in fig. 1. In addition,
we also have two pairs of ports, 10mm apart, in the top
and bottom walls of the combustor in region A. Region B
has a pair of ports at the front-end tip of the bluff body,
45mm downstream of the backward facing step. Finally,
region C has a pair of ports 20mm downstream of the bluff
body.

We inject the micro-jet in steps of 5 SLPM to a maxi-
mum flow rate of 25±1.2 SLPM through each of the ports.
Figure 3 shows the variation of the root-mean-square value
of the acoustic pressure fluctuations (p′rms) for the differ-
ent micro-jet injection locations with respect to the total
momentum flux ratio, (vj/va)2 . Here, vj refers to the
micro-jet velocity and va refers to the velocity of the air
at the combustor inlet. The situation corresponding to
(vj/va)2 = 0 is the baseline case where the turbulent ther-
moacoustic system exhibits limit cycle oscillations. For
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Fig. 2: The cross-section of the top half of the combustion
chamber showing the micro-jet injection locations with respect
to the spatial distribution of s during thermoacoustic instabil-
ity. The flow field is divided into three regions, namely A, B
and C. In region A, the micro-jets are injected from two loca-
tions targeting the critical region identified in fig. 1. Each of
the ports has a diameter of 5 mm.
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Fig. 3: The variation of p′
rms of thermoacoustic oscillations

due to injection of micro-jets in regions A, B and C with re-
spect to (vj/va)2. The situation corresponding to (vj/va)2 = 0
is the baseline case where the turbulent thermoacoustic sys-
tem exhibits limit cycle oscillations. For region A, we get a
suppression of around 85% for both the cases of micro-jet in-
jections. The error bars represent the standard deviation. The
maximum uncertainty in the calculation of (vj/va)2 is ±7%.

each of the micro-jet injection cases, the p′rms is normal-
ized by the corresponding one during thermoacoustic in-
stability (p′rms(baseline); at (vj/va)2 = 0). As we increase
(vj/va)2 , we obtain a suppression of about 86% (17 dB)
and 83% (15 dB) in p′rms for the side wall and top and
bottom wall injections in region A, respectively. After
suppression, we get p′rms ≈ 200Pa, which is close to the
value observed during the stable state of combustor oper-
ation (p′rms ≈ 100Pa).

As we obtain suppression of thermoacoustic oscillations
with micro-jet injection from both the locations in re-
gion A, we can conclude that the orientation of the micro-
jet injection targeting the critical region does not matter.
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Fig. 4: The variation of the s, C̃ and c̃ during (A) thermoa-
coustic instability and (B) during suppression of thermoacous-
tic instability with micro-jet injection. Here, the micro-jet is
injected from the backward facing step of the combustor tar-
geting the critical region ((vj/va)2 = 6.41). We observe that
the region on top of the bluff body shaft no longer remains
as the critical region with the suppression of thermoacoustic
oscillations.

However, the optimal (vj/va)2 for which we get the sup-
pression differs for both cases of injection. This is because
the location of the side wall injection is closer to the critical
region than the location of top and bottom wall injection
(fig. 2). A reduction of 100% in p′rms is not possible as
the inlet flow is turbulent and even the p′rms during the
stable operation is approximately 100Pa. Further, we do
not obtain any reduction in p′rms for micro-jet injection
in ports located in regions B and C, respectively. Hence,
from fig. 3, we can ascertain that the critical region identi-
fied using weighted network analysis is indeed the optimal
location to implement the passive control strategy. With
micro-jet injection at the optimal location, we are able
to shift the turbulent combustor with oscillatory instabil-
ity back to the state of stable operation. The optimal
momentum flux ratio, which suppresses thermoacoustic
oscillations, however, may differ for different combustor
designs.

Next, we again perform high-speed PIV when thermoa-
coustic oscillations are suppressed with micro-jet injection.
We then perform the weighted spatial correlation network
analysis to examine the effect of micro-jet injection on
the critical region identified in fig. 1. We observe that
the region above the bluff body shaft, which was “criti-
cal” during thermoacoustic instability, is no more “criti-
cal” (fig. 4). We hypothesize that the micro-jets would be
disrupting the periodic coherent motion of the flow field
during thermoacoustic instability, leading to the loss of
correlation between the time series of velocity at differ-
ent locations in the critical region. This results in very
low values of the network measures, when thermoacoustic
instability is suppressed.

Mechanism behind suppression. – During the sta-
ble state of combustor operation, acoustic power produc-
tion happens in small fragmented clusters. In contrast,
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the acoustic power production occurs in large clusters dur-
ing thermoacoustic instability [38]. Hence, we can deduce
that by tracking the spatiotemporal dynamics of acous-
tic power sources during micro-jet injection, we would be
able to unmask the mechanism behind suppression of ther-
moacoustic instability. To that end, we perform simulta-
neous acoustic pressure (p′) measurement and high-speed
chemiluminescence (CH∗) imaging of the flame during the
micro-jet injections from the two pairs of ports in the top
and bottom walls of the combustor in region A. The CH∗

chemiluminescence represents the local heat release rate
(q̇(x, y, t)) as the intensity of the light emitted by CH∗

radical is proportional to the chemical reaction rate [29].
Next, we consider a region of interest (length 20mm and
width 22mm) at a distance of 5mm downstream of the
backward facing step (refer to fig. 1(b) in appendix A of
the SM). The variation of p′ is negligible across the re-
gion of interest at a given instant of time as the length
of the combustion zone is very much smaller than the
wavelength of the acoustic oscillations [39]. Hence, we
consider the value of p′ to be a constant in the region
of interest at a given instant of time. We then mul-
tiply p′(t) with the local heat release rate fluctuation
(q̇′(x, y, t) = q̇(x, y, t)− ¯̇q(x, y)) to obtain the spatial distri-
bution of the local acoustic power (p′q̇′) at a given instant
of time [40].

To examine the spatiotemporal evolution of acoustic
power sources (p′q̇′ > 0), we construct 2000 time-varying
local acoustic power networks at each value of (vj/va)2 .
We consider every pixel of the p′q̇′ image to be a node
of the network. Since the computation of the network
measures with the full resolution of the region of inter-
est (202 × 184 pixels) is computationally very costly, we
down-sampled the chemiluminescence images to 50% of
the original resolution using bi-cubic interpolation [41].
With this downsampling, the number of nodes in the net-
work is reduced from 37168 to 9292. Two nodes (i and j)
are connected if and only if (p′q̇′)i and (p′q̇′)j ≥ ϵ and the
Euclidean distance between the two given nodes is less
than or equal to

√
2. Thus, we consider only the nearest

neighbours when establishing a link, which enables us to
track the spatiotemporal evolution of islands of acoustic
power sources. We used ϵ (= 1.0; this value is 1.23% of the
maximum local acoustic power production during ther-
moacoustic instability) to prevent the electronic noise in
the high-speed camera, used for chemiluminescence mea-
surements, from affecting the network computation.

Next, we compute the size of the largest cluster (S)
of the local acoustic power network, at every instant of
time. In graph theory, a connected component, or a clus-
ter, of an undirected graph refers to a sub-graph in which
any two nodes are connected to each other by a path,
i.e., a sequence of links [11]. The size of the giant clus-
ter (S) refers to the number of nodes in the largest con-
nected component of a network. In the present study,
the connected component refers to the islands or clusters
of acoustic power sources. To quantify the spatiotemporal
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Fig. 5: The variation of S̄ along with p′
rms with respect to

(vj/va)2. Suppression of thermoacoustic instability occurs
when large clusters of acoustic power sources disintegrates
into small fragments. The error bars represent the standard
deviation.

evolution of islands of acoustic power sources, we compute
S of the local acoustic power network for each of the 2000
networks for a given value of (vj/va)2 . Figure 5 shows
the variation of the average size of the largest cluster (S̄)
with respect to (vj/va)2 . We observe that as we increase
(vj/va)2 , S̄ also decreases along with p′rms. In the absence
of micro-jet injection, the variation in S̄ is 1.73% when ϵ
is increased from 0.8 to 1.2. Further, the variation in S̄ is
around 9.66% when the average is computed over 500 net-
works instead of 2000 networks. Now, let us examine how
this suppression of p′rms happens with micro-jet injection.

Recently, we investigated the emergence of large clusters
of spatially coherent acoustic power sources at the onset
of thermoacoustic instability from a state of spatially in-
coherent acoustic power production observed during the
state of stable operation using complex networks [42]. We
had constructed time-varying local acoustic power net-
works, as described in the present study, to track the spa-
tiotemporal evolution of clusters of acoustic power sources
during the transition to thermoacoustic instability. We
found that the emergence of large clusters of spatially
coherent acoustic power sources happens via nucleation,
coalescence and growth of acoustic power sources as the
acoustic pressure oscillations grow during intermittency.
During the transition to thermoacoustic instability, we had
shown that S̄ gradually increases, indicating a percolation-
like phase transition.

However, in the present study, S̄ decreases with micro-
jet injection (fig. 5). This resembles the phenomenon of
inverse percolation as the combustor transitions from ther-
moacoustic instability to the state of stable operation with
micro-jet injection [10]. At the optimum momentum flux
ratio, the micro-jets disrupt the periodic coherent motion
of the flow field observed during thermoacoustic instabil-
ity, at the combustor inlet, above the bluff body shaft.
This prevents the roll-up of the shear layer into large-
scale vortices, which, in turn, averts the formation of
large clusters of acoustic power sources. As the coherent
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production of acoustic power ceases, the damping in the
system overcomes the acoustic driving, leading to suppres-
sion of thermoacoustic oscillations. Hence, we can say that
the suppression of large-amplitude thermoacoustic oscilla-
tion happens when the coherent production of acoustic
power sources over large clusters ceases with an optimum
momentum flux ratio of micro-jet injection at an optimal
location.

The methodology presented here can be implemented
in the design stage or the testing stage of gas turbine en-
gines. Engineers obtain the velocity field from the com-
putational fluid dynamic (CFD) simulations, such as the
Large Eddy Simulations (LES), of the turbulent reactive
flow [43]. They can then perform a correlation network
analysis on the velocity field obtained during thermoa-
coustic instability and identify the critical region. Once
the critical region is identified, they can effect changes in
the design of the engine. Even in the testing stage, the
analysis can be used to optimally redistribute the cooling
air to target the critical region and disrupt the coherent
power production.

Conclusions. – In summary, we have presented a novel
approach to mitigate oscillatory instability in turbulent
flows using complex networks. Traditionally, the optimal
location for any passive control strategy is determined by
a large number of trials; investing a humongous amount
of money and time. The present approach using complex
network analysis provides a simple, smart and efficient way
to mitigate oscillatory instabilities by identifying the opti-
mal location for implementing a passive control strategy.
To the best of our knowledge, this is the first experimen-
tal evidence of suppression of oscillatory instability in a
turbulent flow using a passive control strategy involving
complex networks. The present approach can be extended
to the control of other oscillatory instabilities in turbulent
flows such as aeroacoustic [44] and aeroelastic instabili-
ties [45]. We hypothesize that this novel approach can
be used to implement flow control in separated and wall-
bounded turbulent flows as well [46]. Also, we suggest
that the identification of the critical region will help us
to optimally locate the actuators, thus improving the effi-
ciency of active control strategies. An improvement in the
present methodology may be to use nonlinear measures
such as mutual information [16], transfer entropy [47] or
event synchronization [18] instead of Pearson’s correlation,
which is a linear measure, to construct spatial networks.
This may lead to a better identification of critical regions
to implement control strategies.
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Garćıa E., Marwan N. and Kurths J., PLoS ONE, 11
(2016) e0153703.

[23] Russo L., Russo P. and Siettos C. I., PLoS ONE, 11
(2016) e0163226.

[24] Tang J., Mascolo C., Musolesi M. and Latora V.,
Exploiting temporal complex network metrics in mobile
malware containment, in Proceedings of 2011 IEEE In-
ternational Symposium on a World of Wireless, Mobile
and Multimedia Networks (IEEE) 2011, pp. 1–9.

[25] Taira K., Nair A. G. and Brunton S. L., J. Fluid
Mech., 795 (2016) R2.

[26] Unni V. R., Krishnan A., Manikandan R., George
N. B., Sujith R., Marwan N. and Kurths J., Chaos,
28 (2018) 063125.

[27] Unni V. R., Nair S. R. I., Krishnan A., Marwan N.
and Kurths J., System and method for optimizing passive

14003-p6



Suppression of oscillatory instability using complex networks

control of oscillatory instabilities in turbulent flows, US
Patent App. 16/287, 248 (August 29 2019).

[28] Raffel M., Willert C. E., Scarano F., Kähler
C. J., Wereley S. T. and Kompenhans J., Particle
Image Velocimetry: A Practical Guide (Springer) 2018.

[29] Hardalupas Y. and Orain M., Combust. Flame, 139
(2004) 188.

[30] Horvath S., Weighted Network Analysis: Applications
in Genomics and Systems Biology (Springer Science &
Business Media) 2011.

[31] Zhang B. and Horvath S., Stat. Appl. Genet. Mol. Biol.,
4 (2005) 1–43.

[32] Mumford J. A., Horvath S., Oldham M. C.,
Langfelder P., Geschwind D. H. and Poldrack
R. A., Neuroimage, 52 (2010) 1465.
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