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Abstract
An established approach to studying interrelations between two non-stationary time series is to compute the ‘win-
dowed’ cross-correlation (WCC). The time series are divided into intervals and the cross-correlation between
corresponding intervals is calculated. The outcome is a matrix that describes the correlation between two time
series for different intervals and varying time lags. This important technique can only be used to compare two
single time series. However, many applications require the comparison of ensembles of time series. Therefore,
we propose a visual analytics approach that extends the WCC to support a correlation-based comparison of two
ensembles of time series. We compute the pairwise WCC between all time series from the two ensembles, which
results in hundreds of thousands of WCC matrices. Statistical measures are used to derive a concise description of
the time-varying correlations between the ensembles as well as the uncertainty of the correlation values. We fur-
ther introduce a visually scalable overview visualization of the computed correlation and uncertainty information.
These components are combined with multiple linked views into a visual analytics system to support configuration
of the WCC as well as detailed analysis of correlation patterns between two ensembles. Two use cases from very
different domains, cognitive science and paleoclimatology, demonstrate the utility of our approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

Time series are analyzed in many scientific disciplines. An
essential analysis task is the correlation-based comparison
of time series. It allows for studying important phenomena
such as climate impacts on the spreading of hazardous infec-
tious diseases [HTM09]. A powerful technique for this task
is the windowed cross-correlation (WCC) [BRXK02,Alt11].
It addresses two frequent problems: (1) there can be a time
lag between the temporal behavior in different time se-
ries [GMFK13], and (2) the time series can be non-stationary
and, thus, their correlation can change over time [ZGY∗08].
The WCC solves these problems for the comparison of two
time series as follows: It divides the time series into inter-
vals of equal length, called windows (Fig. 1a). Then, the
cross-correlation (CC) between corresponding windows is
calculated (Fig. 1b). The CC shifts two windows relative to
each other and computes the correlations between them for
a range of temporal offsets (lags) [Mad08]. The outcome of

the WCC is a two-dimensional matrix of correlations be-
tween two time series. The columns represent the position
of the time windows, the rows the different lags. A static
plot of this matrix, in which correlation values are mapped
to color (Fig. 1c and 1d), is typically used by scientists to in-
vestigate the time-varying correlation between two time se-
ries [Mar07].

Although powerful, the WCC only address the compar-
ison of two individual time series. However, many scien-
tific disciplines such as climate modeling [BRG∗12], chem-
istry [SG93], or brain research [BBEP∗92] study ensembles
of time series (sets of time series produced, e.g., through
Monte Carlo simulation or repeated measurements). There-
fore, we extend the WCC to a visual analytics solution that
supports a correlation-based comparison of two ensembles
of time series. Our approach combines semiautomatic statis-
tical analysis with interactive visual exploration. The com-
putational part enables users to calculate the pairwise WCC
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between all time series from the two ensembles. Since a sin-
gle ensemble may easily comprise hundreds of time series,
this yields hundreds of thousands or even millions of WCC
matrices. Each matrix depicts the same combinations of time
window and lag; only the correlation values differ between
matrices. To support visual exploration, we use statistical
measures to describe the resulting distribution of correlation
values at each combination of time window and lag. The out-
come of the statistical analysis is presented in a visually scal-
able overview visualization of the WCC. It depicts the sign,
magnitude and uncertainty of the time-varying correlations
between two ensembles. WCC computation and overview
visualization are combined with multiple linked views into
a visual analytics system. It supports flexible configuration
of the WCC and detailed analysis of correlation patterns as
well as relating these patterns to the input ensemble data.

This approach is based on a thorough task- and require-
ment analysis. After an overview of related work (Section 2),
we will provide more detail about the identified require-
ments (Section 3). To meet these requirements, we had to
face a number of visualization challenges, in particular, plot-
ting and exploring more than a thousand time series with up
to 10k observations each, visualizing large WCC matrices,
as well as visualization and exploration of uncertainty infor-
mation. Section 4 will describe the individual components
of our concept and how they address the requirements and
visualization challenges. We further provide two use cases
from very different domains to demonstrate the significance
of our approach (Section 5): (1) detection of event-related
potentials in electroencephalography (EEG) measurements
and (2) comparison of paleoclimate time series ensembles
derived from stalagmites. Finally, we summarize our results
and suggest areas of future work (Section 6).

2. Related work

Since we have covered studies concerning the computation
and application of the windowed cross-correlation in the in-
troduction, we will focus this section on related work from
the visualization community.

While many works support visualization and visual ex-
ploration of time series data [AMST11], only a lim-
ited number of systems focus on the visual analysis of
ensemble data [KH13]. These approaches provide valu-
able solutions for applications such as weather forecast-
ing [PWB∗09, SZD∗10], finding potential indicators of cli-
mate change [KLM∗08], car engine optimization [MGJ∗10],
or development of power train systems [PPBT12].

We address the comparison of time series ensembles,
in particular, the detection of time-varying correlations be-
tween two ensembles. For exploration of the ensemble data,
we took inspiration from works that use binning to visualize
time series with thousands of observations [BM04,DFW08],
and approaches that map line density to opacity to visualize

large sets of time series at interactive frame rates [NH06,
MKO∗08]. To analyze the uncertainty of correlations be-
tween two ensembles, we studied various guidelines for en-
coding uncertainty information [Mac92, MRH∗05, Zuk08].
We were especially inspired by approaches that use statis-
tical moments to visualize the uncertainty in distributions
of numerical values [PWL97, PWB∗09, PKRJ10, KDP01,
CR00, HMZ∗14]. Since we must cope with a large num-
ber of distributions of correlation values, we turn to ma-
trix visualization, which allows for displaying massive data
in a compact visual overview [WTC08]. We specifically
build on a matrix visualization technique called Hinton di-
agram [HMR86, HS86]. This technique is used in network
analysis to visualize, e.g., network weights or activations of
units in a network [BGD94, LK11]. We extend the Hinton
diagram to a matrix that supports hierarchical aggregation
and semantic zooming [EDG∗08, EF10] to depict the time-
varying correlations between two ensembles as well as their
uncertainty.

3. Design requirements

The visual analytics approach presented in this article is the
result of a close collaboration with two experts in time se-
ries analysis, both co-authors of this paper. A user- and task-
centered approach [DKS∗10] that involved frequent meet-
ings and discussions allowed us to elicit the following design
requirements for the comparison of two time series ensem-
bles via WCC:

DR1 Allow for flexible configuration of windowed cross-
correlation (WCC) computation
Scientists typically focus on particular aspects of cor-
relations during the comparison of time series via
WCC, such as short-, medium-, or long-term tempo-
ral variations of correlation. Each of these aspects re-
quires a different set of parameters for the WCC com-
putation. Furthermore, scientists sometimes want to
focus the comparison on specific subsets of the ensem-
bles. Both – analysis focus and subsets of interests –
may change in the comparison process. Researchers
must therefore be able to:

• Choose between comparing entire ensembles or
user-specified subsets.

• Modify the parameters and recompute the WCC.
• Browse and easily access WCC results previously

computed in the analysis process.

DR2 Provide measures that capture the uncertainty of com-
puted correlation values
Our collaborating scientists consider the spread of a
distribution of correlation values as uncertainty. They
require quantitative information about this spread for
each combination of time window and lag in the WCC.
A common approach is to calculate statistical mo-
ments that quantify the central tendency and the de-
gree of dispersion. These measure can then be used in
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(a) Starting point: two time series divided 
into time windows of equal length

(b) Cross-correlations between time 
series for each window

(d) Result: plot of correlations for all 
combinations of time window and lag

(c) Mapping of correlation values to color

C
or

re
la

tio
n

−2π −π 0 π 2π
−1

−0.5

0

0.5

1

Lag

Co
rre
lati

on

−
2
π

−
π

0
π

2
π

−
1

−
0
.50

0
.51

L
a
g

Correlation

−
2
π

−
π

0
π

2
π

−
1

−
0
.50

0
.51

L
a
g

Correlation

…

0 π 2π 3π 4π 5π 6π 7π 8π 9π 10π 11π 12π
−4

−2

0

2

Time

x,
 y

Time

La
g

 

 

0 π 2π 3π 4π 5π 6π 7π 8π 9π 10π 11π 12π
−2π

−π

0

π

2π

Correlation
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−2π −π 0 π 2π
−1

−0.5

0

0.5

1

Lag

Co
rre
lati

on

−2π −π 0 π 2π
−1

−0.5

0

0.5

1

Lag

Co
rre
lati

on

…

−2π −π 0 π 2π
−1

−0.5

0

0.5

1

Lag

Co
rre
lati

on

Lag

C
or

re
la

tio
n

Lag

Time

90˚

0 π 2π 3π 4π 5π 6π 7π 8π 9π 10π 11π 12π
−4

−2

0

2

4

Time

x
,
 
y

Time

L
a

g

 

 

0 π 2π 3π 4π 5π 6π 7π 8π 9π 10π 11π 12π
−2π

π

0

π

2π

Correlation
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8-0.8 0.80.0

1 2 3 4 5 6 7 8 9 10 11 12 10 2 3 4 5 6 7 8 9 10 11 12

0

1

2

-2

-1

0

2

4

-4

-2

0

Figure 1: Computation and basic plot of the windowed cross-correlation between two time series. The time series are divided
into windows of equal length (a) and the cross-correlation between the time series for corresponding intervals is calculated (b).
The resulting matrix of correlations can be visualized by mapping correlation to color (c). The matrix plot shows that one time
series exhibits a time-varying phase difference, visible by the change of the lagged correlation over time (d).

(interactive) visualizations to further facilitate the as-
sessment of uncertainties. Therefore, a visual analytics
approach must:

• Provide measures of central tendency.
• Provide measures of dispersion.
• Provide confidence intervals.

DR3 Provide overview of correlations and their uncertainty

Scientists want to detect the predominant patterns in
the correlations between two time series ensembles,
especially patterns of temporal variation and patterns
of uncertainty of correlation values. This requirement
is associated with the following tasks:

• Obtain overview of correlation values for all com-
binations of time window and lag.

• Obtain overview of the uncertainty of correlation
values for all combinations of time window and
lag.

DR4 Support exploration of correlations and their uncer-
tainty
After detecting the predominant patterns of correlation
and uncertainty, researchers want to gain a detailed
understanding of the time-varying correlation between
two ensembles as well as the reliability of the results.
To this end, they need to:

• Inspect in detail the temporal variation of correla-
tions and the variations in uncertainty.

• Assess the statistical significance of correlation
values.

• Examine the distribution of correlation values for
individual combinations of time window and lag.

DR5 Support inspection of the two time series ensembles
To interpret the results of the WCC computation and
to gain a better understanding of the time-varying cor-
relation, scientists have to inspect and compare the en-
semble data that went into the calculation. In particu-
lar, they have to:

• Obtain an overview of the time series in the two
ensembles.

• Inspect and compare the distribution of time series
in the ensembles.

4. Visual analytics approach

To meet the identified requirements, our concept combines
two modules: semiautomatic statistical analysis (module
M I) and interactive visual exploration (module M II). Each
module comprises several components (Figure 2).

4.1. Linking between modules and components

On a module level, users choose the ensemble data and
parametrize the WCC calculation in module M I, which then
computes the data for visual exploration in module M II.
The insight researchers gain through interactive visual ex-
ploration may change the focus of analysis, which, in turn,
may prompt users to go back and modify the WCC parame-
ters or even the input data.

On the component level, M I.1 passes the user-selected
ensemble data and the parameters for the WCC computation
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User-specified elements

Module M I: Semiautomatic statistical analysis

M I.1 
 

Configuration of 
WCC computation

M I.3 
 

Computation of 
measures of 
uncertainty

Insight 

• Patterns of correlation 
• Patterns of uncertainty 
• Significant correlations 
• Uncertain correlations 
• Outlying correlations

Time series 
ensembles

M I.2 
 

Computation of 
pairwise WCC

WCC  
parameters

Module M II: Interactive visual exploration

M II.2 
 

Inspection of 
time series ensembles 

M II.1 
 

Overview and exploration 
of correlations and 

uncertainty

Ensemble 
data

WCC  
data

Statistical 
data

Combination of 
window and lag

Semantic 
zoom level

Change of 
focus of analysis

Figure 2: Our visual analytics concept. It comprises computation and statistical analysis of windowed cross-correlations
(WCC) between two time series ensembles (module M I) and interactive visual exploration of the resulting time-varying corre-
lations and their uncertainty (module M II).

to M I.2. The latter calculates the pairwise WCC between
the time series from both ensembles and forwards the result-
ing WCC data to M I.3. Component M I.3 computes statisti-
cal measures to summarize the correlations and their uncer-
tainty. These data are passed to component M II.1 for visual
exploration. This component provides researchers with an
overview of the correlation results. It also allows users to in-
teractively filter combinations of time window and lag that
meet specified criteria regarding correlation values and un-
certainty. The underlying distribution of correlation values
for selected combinations of time window and lag can also
be explored in M II.1, while the corresponding time series
data can be studied in component in M II.2. Both compo-
nents, M II.1 and M II.2, support hierarchical aggregation
and semantic zooming to cope with the limited screen space.

The remainder of this section will describe the two main
modules of our concept as well as their respective compo-
nents and how they address the design requirements.

4.2. Module M I: Semiautomatic statistical analysis

This part comprises components M I.1, M I.2, and M I.3
which cover design requirements DR1 and DR2.

Component M I.1: Configuration of windowed
cross-correlation (WCC) computation

DR1 – Allow for flexible configuration of WCC computation.

Component M I.1 allows scientists to choose the two en-
sembles for comparison and, if need be, to further focus
on particular time series from the two ensembles. Next, re-
searchers use M I.1 to set the parameters for the WCC: win-
dow size, overlap between consecutive windows, and lag
range. Scientists do not necessarily have to initiate a new

computation. For every compared pair of ensembles, we
store previous WCC configurations and results in a database.
Scientists can use this component to browse through and to
revisit them. When users decide to initiate a new computa-
tion, the ensemble data and the WCC parameters are passed
to component M I.2.

Component M I.2: Computation of pairwise of
windowed cross-correlation (WCC)

This component performs the actual WCC computation. Let
M and N be the two sets (ensembles) of time series. All
time series in M and N must be equal regarding the num-
ber of observations, the timestamps of the observations, and
the length of intervals between observations. Note that M I.2
could also be extended to include correlation analysis tech-
niques for irregularly sampled time series, such as kernel
based correlation estimation [RMHK11]. We compute the
WCC for all pairs of time series in M×N (see [BRXK02]
for details regarding the computation of the WCC). As a re-
sult, we obtain k = |M×N| WCC matrices. These data are
passed to component M I.3.

Component M I.3: Computation of measures of
uncertainty

DR2 – Provide measures that capture the uncertainty of
computed correlation values.

Since the same parameters were used for all WCC compu-
tations, each matrix depicts the same combinations of time
window and lag; only the correlation values differ between
matrices. Hence, we obtain a distribution of correlations for
each window-lag combination. We use descriptive statistics
for analyzing the uncertainty in these distributions [Urd10].
This component calculates the mean and median correlation
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as measures of central tendency for each window-lag com-
bination, and the standard deviation and interquartile range
as measures of dispersion. It also determines the confidence
interval of the correlations for a user-specified p-value with
a t-test [Urd10]. This information is then used to calculate
the percentage of statistically significant correlations at each
combination of window and lag. Note that M I.3 is not lim-
ited to this set of statistical measures. If need be, our concept
allows for incorporating additional measures.

4.3. Module M II: Interactive visual exploration

This module is composed of component M II.1, which cov-
ers design requirement DR3 as well as DR4, and component
M II.2, , which addresses design requirement DR5.

Component M II.1: Overview and exploration of
correlations and their uncertainty

DR3 – Provide overview of correlations and their uncer-
tainty.

To address this requirement, we extend the basic WCC
matrix plot introduced in Figure 1 to an interactive and visu-
ally scalable visualization of the WCC and its uncertainty.
Our technique is inspired by Hinton diagrams [HMR86,
HS86]. We map each combination of time window and lag
to a square in a matrix (Figure 3). The color of the square de-
notes the mean of the underlying distribution of correlation
values. We use a diverging color scale to differentiate pos-
itive and negative correlations of different magnitude. It is
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Figure 3: Correlations view (top) and color legend with
integrated scatter plot (bottom) of component M II.1. The
color of the squares encode the mean or median correla-
tions of each combination of time window (x-axis) and lag
(y-axis). The size inversely depicts the uncertainty of the un-
derlying distribution. Thus, small squares represent high un-
certainty. When users select a window-lag combination it is
highlighted in the correlations view (yellow square) and in
the scatter plot (labeled cross).

centered around zero and its range is determined by the high-
est absolute correlation value in the data. The square’s size
inversely encodes the standard deviation of the distribution.
Hence, the higher the uncertainty (or variation), the smaller
the square. For more robustness against outliers, users can
alternatively choose to display the median and interquartile
range in the correlations view. The statistical measures for
this mapping are provided by component M I.3.

The texture that results from arranging the squares on the
XY plane facilitates preattentive processing of patterns. This
view enables scientists to differentiate strong correlations
(saturated colors) from weak correlations (light colors) and
uncertain values (small squares) from rather certain correla-
tions (large squares). Note that color and size in this encod-
ing potentially interact [DG86]. In our scenario, however,
scientists are particularly interested in strong correlations
that relatively certain. These represent the most reliable in-
dicators of meaningful correlations between two ensembles.
Since this information is emphasized in our design through
large squares of intense color, there is little chance of misin-
terpretation.

Although Hinton diagrams are a powerful technique, they
do not scale well to large WCC matrices because the squares
encoding the numerical values require significant screen
space. We experimented with mapping uncertainty to trans-
parency instead of size as a more space-efficient encoding.
However, this alternative hindered the interpretation of cor-
relation values. Therefore, we chose to extend the Hinton
technique to support semantic zooming [EF10]. We bin the
matrix whenever the screen space does not suffice to dis-
play all squares. The statistical information conveyed by the
squares in each bin is summarized in a single glyph. We
operate on the statistical information encoded in the input
squares instead of the underlying distributions of correla-
tions because it allows for on-the-fly construction of the
glyphs and, hence, zooming of the matrix in real time. The
glyph is composed of three nested squares (Figure 4). The
color of the middle square encodes the median correlation
of the input squares; its size represents the median uncer-
tainty. A transparent outer square denotes the uncertainty of
the least uncertain input square. A transparent inner square
shows the uncertainty of the most uncertain input square.
We chose this design for three reasons: (1) it preserves the
visual encoding of the input squares, (2) it conveys infor-
mation about the range of uncertainty among the aggregated
window-lag combinations, and (3) the glyphs are easily dis-
tinguishable from the squares of the non-aggregated repre-
sentation, which signals to users that they are looking at vi-
sual aggregates. The binning of the matrix depends on the
available screen space and the minimum sizes of the squares
and glyphs. When users change the zoom level, the new bin-
ning as well as the input squares for each bin are determined,
and the glyphs are adjusted accordingly.

To enable scientists to obtain an overview of poten-
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Size of middle square: median uncertainty

Size of outer square: minimum uncertainty

Size of inner square: maximum uncertainty

Color of middle square: median correlation

Figure 4: Glyph encoding the results of aggregating the dis-
tributions of correlations from multiple window-lag combi-
nations (top) and a zoomed-out version of the correlations
view using the glyph (bottom). ‘Uncertainty’ denotes either
standard deviation or interquartile range of correlation val-
ues. Small squares signal high uncertainty and vice versa.

tial relationships between correlation values and uncertainty
across all window-lag combinations, we integrate a scat-
ter plot into the color legend of the correlations view (Fig-
ure 3). It shows the mean or median correlation values plot-
ted against the uncertainty. Furthermore, the correlations
view and the scatter plot are linked to enable exact quantita-
tive assessment. When users mouse-point at any window-lag
combination in the matrix, the exact correlation and uncer-
tainty values are displayed in the scatter plot.

To present scientists with additional information about
the uncertainty of correlation values, our tool provides
an alternative view of the WCC matrix. This view maps
the fraction of statistically significant correlations at each
combination of time window and lag to color in a pixel
display (see Figure 10 for a view of the fraction of positive
correlations).

DR4 – Support exploration of correlations and their uncer-
tainty.

Besides a semantic zoom for detailed inspection of cor-
relations and uncertainties, component M II.1 provides two
additional mechanisms to meet requirement DR4.

The first mechanism is interactive filtering via range slid-
ers. Scientists can use these sliders to gray out window-lag
combinations in the correlations view that do not meet speci-
fied quantitative criteria. In particular, we offer the measures
from component M I.3 for filtering: mean and median corre-
lation, standard deviation, interquartile range, and the frac-
tion of significant (negative/positive/total) correlations at the
window-lag combinations. The correlations view adjusts in
real time, which allows scientists to explore the variation of
correlations and their uncertainty, as well as the statistical
significance of the correlations.

0.0 0.2 0.4 0.6 0.8-0.2-0.4-0.6-0.8

positive significantnegative significant

Figure 5: On-demand histogram of correlation values for a
combination of time window and lag. The gray areas in the
background mark statistically significant correlations.

To enable scientists to explore the distributions of correla-
tion values that are represented by each square in the correla-
tions view, we provide an on-demand histogram (Figure 5).
It allows researchers to examine properties of the underly-
ing distributions, e.g., modality or symmetry. Furthermore,
gray areas in the histogram mark the statistically significant
portions of the distribution.

Component M II.2: Visual inspection and comparison of
the two time series ensembles

DR5 – Support inspection of the two time series ensembles.

Component M II.2 visualizes the two time series ensem-
bles that went into the WCC calculation (Figure 6). Both en-
sembles are plotted in the same line chart with a unique color
assigned to each ensemble. This facilitates inspection and
comparison regarding trends, amplitude, scale, and range
– valuable information that helps scientists to interpret the
WCC results. Users can further choose between displaying
the original time series data or normalized versions. The lat-
ter enables scientists to compare the two ensembles on the
same scaling level while the former accentuates differences
in scaling level.

Figure 6: Line chart showing both ensembles (component
M II.2). Line density is mapped to opacity to depict the un-
certainty in the ensembles. Dense regions in each ensemble
are mapped to high opacity, sparse regions are more trans-
parent to indicate less agreement among ensemble members.
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To make M II.2 visually scalable, we had to address two
issues: (1) visualization of time series with thousands of data
points, and (2) depicting hundreds or thousands of time se-
ries in the same plot.

We use a binning approach in combination with semantic
zooming to address the first issue. In particular, we divide the
time series into intervals of equal length (bins) and calculate
the mean of each interval. The resulting averaged time series
are then shown in the line chart. Semantic zooming and pan-
ning enables scientists to inspect the binned time series in
more detail. After each zooming action the bin size (level of
aggregation) is adjusted automatically to match the number
of pixels available to display the selected time range.

To address the second scalability issue, we map the
line density of each ensemble to opacity [NH06, KLM∗08,
MKO∗08]. Dense regions signal high agreement among en-
semble members and are mapped to high opacity; sparse re-
gions are more transparent to indicate less agreement among
ensemble members. This provides users with an overview of
the distribution of time series within the ensembles. If need
be, check-boxes allow scientists to display, and therefore fo-
cus on, only one of the two ensembles.

5. Use cases

We demonstrate the utility of our concept with two appli-
cations from the fields of cognitive science and paleocli-
matology. In both fields, ensembles of time series are fre-
quently compared. However, the standard procedure is to
compare only the mean or median time series of the ensem-
bles. Our visual analytics approach enabled us to perform a
correlation-based comparison of entire ensembles.

5.1. Interpersonal detection of event-related potentials

In cognitive science, the brain activity is studied by measur-
ing the electroencephalogram (EEG) at the human scalp. In
experiments, stimuli are presented to subjects and the poten-
tial changes in measured brain activity, called event-related
potential (ERP), are investigated [Luc05]. Due to many dis-
turbing factors, the signal to noise ratio in the EEG measure-
ments is very low. Therefore, the trials are repeated many
times and only the average of these trials is then used to
identify the ERPs [SIKS14]. However, significant informa-
tion about ERPs is lost, when looking only at trial averages.

In the following, we demonstrate how our visual analyt-
ics approach was used to compare entire ensembles of EEG
measurements to test the assumption that the same facial
stimulus causes the same electrophysiological response in
different humans. The analysis considered EEG data of an
experiment in which subjects were presented with different
variations of a face [SIKS14]. Two subjects were randomly
selected from this experiment and the measurements from a

−500 −400 −300 −200 −100 0 100 200 300 400 500
−20

−10

0

10

20

30

Time (ms)

Vo
lta

ge
 (m

V)

a)

−500 −400 −300 −200 −100 0 100 200 300 400 500
−20

−10

0

10

20

30

Time (ms)

Vo
lta

ge
 (m

V)

b)

Figure 7: Electroencephalogram (EEG) ensembles of two
subjects (a) and (b). The red lines represent the average
of the respective trial. After a visual stimulus at time t =
0 ms, an evoked electrophysiological activity around 170 ms
(marked by the blue shading) can be clearly observed for
subject (b), but only suspected for subject (a).

single electrode were used to compare the interpersonal elec-
trophysiological activity. For the first subject 66 trials and
for the second subject 51 trials were available (Figure 7).
The presented stimulus usually evokes a negative potential
change at 170 ms, a so called N170. Analyzing the N170
provides important information about a person’s sensitivity
to faces. Note that while in panel (b) of Figure 7 a prototyp-
ical N170 response can be observed, this is not obvious in
panel (a).

To analyze whether both subjects show similar sensitivity
to faces, the pairwise WCC between their respective EEG
ensembles was computed. Based on their expert knowledge,
scientists considered the following parameters to be appro-
priate: window size of 55 ms, window overlap of 45 ms, and
lag range of -25 to 25 ms. The correlations view revealed
strong correlations between the ensembles in the time inter-
val between 120 and 170 ms (Figure 8a). Inspecting indi-
vidual window-lag combinations with the on-demand his-
togram showed that within the interval between 120 and
170 ms, the majority of the trials in the ensembles were pos-
itively correlated (Figure 8b).

Our approach clearly reveals that the subjects’ responses
to faces are similar. Moreover, the high correlation values
between 120 and 170 ms show a tendency to be lagged by
10 ms. This suggests that subject one has a slightly slower re-
action time than subject two. These insights cannot be read-
ily inferred from the plots shown in Figure 7 or by only
comparing individual trials. From these results it can be con-
cluded that the same facial stimulus causes very similar elec-
trophysiological activity in the two subjects.
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Figure 8: Correlations between EEG ensembles of two sub-
jects. In both subjects, the presented facial stimulus causes
the same electrophysiological activity between 120 and
170 ms (a). This is revealed by the strong correlations within
this time interval. The histogram shows that the majority of
the trials is significantly correlated (b).

5.2. Replication of paleoclimate variation derived from
stalagmites

In a second example we focus on an important problem in
paleoclimatology, where proxy records (such as time series
derived from ice cores or stalagmites) from almost the same
location would be expected to represent a similar behavior.
This is called replication of proxy records and is often not
the case, because either the proxies are not reflecting the pa-
leoclimate variation or external factors dominate the climate
signal in the proxy record [HHH∗08, Lac09].

The comparison involves two proxy records derived from
stalagmites collected in Heshang cave [HHH∗08] and San-
bao cave [WCE∗08], both located in China. Both records
cover the period between 9000 years before present (BP)
and 500 years BP. The caves are quite close (approximately
150 km) and the two proxy records should reproduce the
same climate signal. The dating of the proxy records in-
volves a certain amount of uncertainty. Therefore, a Monte
Carlo approach was used to create ensembles of possible re-
alizations of time series [BRG∗12].

To analyze the replication, the WCC between both proxy
record ensembles was envestigated with our visual analytics
approach. A typical time scale of interest to paleoclimatol-
ogists is 500 years, with an overlap of 430 years. Since the
dating uncertainty in these particular ensembles is up to 200
years, a lag range of ±200 years was chosen. Our tool re-
veals correlations between both ensembles for the entire time
period (Figure 9). The varying magnitude and uncertainty
of correlations uncovers significant variation in the ensem-
bles. This variation, which is also visible in the time series
view (Figure 9 top), is caused by dating uncertainties. Study-

Figure 9: The windowed cross-correlation between two en-
sembles of paleoclimate time series. In accordance with
domain-specific conventions, the most recent observations
are plotted on the left and the oldest on the right.

ing the fractions of significant positive correlations over all
combinations of time window and lag (Figure 10) reveals the
generally strong correlation between both ensembles. This
particular visualization provides valuable information that
allows for reducing the dating uncertainties by extracting
a correction function that aligns both proxy records to the
same chronology. Note that for some epochs, e.g., around
7700 years BP, the fraction of significant correlations is high
over a range of lags (dashed rectangle in Figure 10). To iden-
tify a suitable lag for a correction function, the distributions
at the corresponding window-lag combinations were com-
pared. The most suitable lag is the one that has the largest
number of high positive correlation values. For example, for
the time period at 7700 years BP, the highest correlation val-
ues can be found at lag−80 (Figure 10(b)), whereas at other
lags the number of high, though still significant, correlation
values is reduced (Figure 10(c, d)).

From these findings it can be concluded that both proxy
records replicate well, although not perfectly. Main issues
are differences between the records caused by unresolved
processes influencing the dating procedure. However, the
proposed visual analytics approach enabled the extraction of
a correction function which reduces the uncertainties in the
dating procedure.

6. Summary and conclusion

In this paper, we presented a visual analytics approach that
extends an established method for correlation-based com-
parison of two time series – windowed cross-correlation –
to support the comparison of entire ensembles of time se-
ries. To meet the requirements of time series analysts, we
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Figure 10: (a) Fractions of significant positive correlations
between two ensembles of paleoclimate time series. The
dashed line indicates the derived correction function for re-
ducing the dating uncertainties. (b–d) Looking at the distri-
butions of correlation values for different lags at the epoch
around 7700 years BP (dashed rectangle) allows for identi-
fying the most suitable lag for the correction function. Since
(b) exhibits the largest portion of high correlations, its re-
spective lag was chosen.

combined semiautomatic statistical analysis with visual ex-
ploration in a field-ready visual analytics system. We fur-
ther build on Hinton diagrams to derive a novel visualization
of windowed cross-correlations between ensembles. This
matrix-like visualization is visually scalable through seman-
tic zooming and provides an overview of the magnitude and
uncertainty of the time-varying correlations between two en-
sembles. Two use cases demonstrated that our concept al-
lows for gaining valuable insight into the interrelations be-
tween ensembles of time series. Insight which, according
to the co-authoring domain experts, could only be obtained
with our approach.

Regarding the performance of our system, one has to con-
sider two aspects: the computation of the WCC and the sta-
tistical measures, and the interactive visual exploration. The
run time of the former highly depends on the application sce-
nario, i.e., the number of time series, the number of obser-
vations per time series, and the parameters of the WCC. In
the two use cases (Section 5), the WCC calculation took 3
and 37 seconds, respectively (2.6 GHz Intel Core i5 laptop).
Since our tool is for domain experts who typically know the
appropriate parameters, the computational cost of the WCC
calculation was not a concern in our scenarios. The subse-
quent visual analysis is highly interactive, allowing for real-
time exploration of the computed correlations.

To address an even wider range of analysis tasks, we
plan two extensions of our approach. (1) Since our con-
cept is also applicable to other methods for studying in-
terrelations between time series, e.g., cross and joint re-
currence [MK02, GMFK13], we intend to incorporate these
methods. (2) We would also like to support the comparison

of more than two ensembles, adapting our concept to the vi-
sual analysis challenges posed by a multi-way comparison.
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MER A., LEŽ A., HAUSER H.: Interactive visual analysis of
multiple simulation runs using the simulation model view: Un-
derstanding and tuning of an electronic unit injector. IEEE T. Vis.
Comput. Gr. 16, 6 (Nov 2010), 1449–1457. 2

[MK02] MARWAN N., KURTHS J.: Nonlinear analysis of bi-
variate data with cross recurrence plots. Phys. Lett. A 302, 5–6
(2002), 299–307. 9

[MKO∗08] MUIGG P., KEHRER J., OELTZE S., PIRINGER H.,
DOLEISCH H., PREIM B., HAUSER H.: A four-level fo-
cus+context approach to interactive visual analysis of temporal
features in large scientific data. Comput. Graph. Forum 27, 3
(May 2008), 775–782. 2, 7

[MRH∗05] MACEACHREN A. M., ROBINSON A., HOPPER S.,
GARDNER S., MURRAY R., GAHEGAN M., HETZLER E.: Visu-
alizing Geospatial Information Uncertainty: What We Know and
What We Need to Know. Cartogr. Geogr. Inf. Sci. 32, 3 (2005),
139–160. 2
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