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Abstract. When network and graph theory are used in the study of complex systems, a typically finite
set of nodes of the network under consideration is frequently either explicitly or implicitly considered
representative of a much larger finite or infinite region or set of objects of interest. The selection procedure,
e.g., formation of a subset or some kind of discretization or aggregation, typically results in individual nodes
of the studied network representing quite differently sized parts of the domain of interest. This heterogeneity
may induce substantial bias and artifacts in derived network statistics. To avoid this bias, we propose an
axiomatic scheme based on the idea of node splitting invariance to derive consistently weighted variants
of various commonly used statistical network measures. The practical relevance and applicability of our
approach is demonstrated for a number of example networks from different fields of research, and is shown
to be of fundamental importance in particular in the study of spatially embedded functional networks
derived from time series as studied in, e.g., neuroscience and climatology.

1 Introduction

1.1 Motivation

In the last decades, network and graph theory have suc-
cessfully been applied to various kinds of complex systems,
and many different measures have been defined to study
their structural and topological properties. Most of these
are of a combinatorial nature, based on counts of certain
nodes, links, triangles, paths, etc. (for an overview, see,
e.g., [1–6]).

Often, a typically finite set of nodes of the studied
network is either explicitly or implicitly considered repre-
sentative of a much larger finite or infinite set of objects
of interest (which we will call the domain of interest or
in sampling contexts the population), either by being a
somehow selected or sampled subset of this larger set or,
more often, by constituting some kind of discretization,
aggregation, or coarse-graining of it. Typical examples are
networks of

1. functional connections between differently sized re-
gions of interest (ROIs) in the human brain, as in [7–9]
and Figure 1,

2. dynamical couplings or statistical associations between
time-series measured at discrete regular grid points, in

a e-mail: yong.zou@pik-potsdam.de

irregular mesh cells, or at otherwise sampled discrete
locations on some manifold (e.g., a climate network
either using a latitude-longitude-regular grid on the
Earth’s surface, as in [10,11], or with meteorological
stations as nodes),

3. routing connections between autonomous systems
(AS’s) in the internet, representing groups of indi-
vidual servers, users or ranges of IP addresses, as
in [12–15],

4. cross-references between articles containing different
amounts of content in an online encyclopedia, as
in [16,17],

5. social relationships between households consisting of
different numbers of individuals, as in [18,19],

6. trade relationships between countries with differing
gross domestic product and representing different
numbers of consumers, as in [20] and Figure 2,

7. proximities between sampled state vectors in the
(reconstructed) phase space of a dynamical sys-
tem [21–23], sampled at irregular points in time.

Depending on the meshing, sampling, or parcellation
method, the chosen level of aggregation or description,
and the availability of data, some parts of the domain
of interest might be represented by relatively more nodes
than others, e.g.: the polar or densely populated regions
on the Earth’s surface in a climate network (since grid
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Fig. 1. (Colour online) Functional human brain example network (spring model layout of the non-isolated nodes, labels see [7]).
Disk area is roughly proportional to node weight (ROI volume).

Fig. 2. (Colour online) World trade network of significant trade relations in 2009 (spring model layouts, country codes according
to ISO 3166). Disk area is proportional to 2008 GDP (A) or population (B,C). Node colour indicates three-group solutions of
Newman’s [24] modularity-based partition algorithm (see Appendix B, Modularity). The node-weighted (n. s. i.) version using
GDP (A) and the unweighted version (B) give almost identical groups, whereas the n. s. i. version using population (C) differs
considerably, producing more equally populated regions.

points cluster at the poles and meteorological stations
cluster in populated areas); the subcortical area in the hu-
man brain (when this is parcellated into smaller regions);
the younger AS’s in the internet (usually having below-
average numbers of users); the more technical subjects
in the encyclopedia (usually being organized into shorter
articles); the childless population of a village (having a

higher ratio of households per people); in the trade net-
work the industrialized world when the interest is in con-
sumers (consisting of more countries per population) or
the non-industrialized world when the interest is in GDP
(consisting of more countries per GDP); the more densely
sampled time periods in the dynamical system. Often, this
problem of over-representing some parts of the domain of
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interest is directly related to the size distribution of the
objects chosen as nodes. That distribution is frequently
heavy-tailed, e.g., for AS’s in the internet, articles in the
encyclopedia, and countries in the trade network.

The described representation bias can cause serious
pitfalls in the interpretation of results obtained from the
selected network, if one wants to make inferences about
structural and topological properties of the domain of in-
terest (i.e., in the above examples, about all locations on
the globe or in the brain, all users of the internet, all units
of content in the encyclopedia, all persons in the village,
all consumers, or all time points on the trajectory, re-
spectively). From both a statistical and an approximation-
theoretical point of view it is therefore important to first
decide which structural or topological properties of the
domain of interest we are interested in (e.g., the connec-
tivity distribution or amount of clustering), and then to
determine what measure in the selected network could be
used as a good estimate or approximation of these proper-
ties of the underlying domain of interest. Often, the net-
work construction (that is, the choice of nodes and links)
also involves some parameters like sampling density, grid
origin, orientation and size, mesh size, or link inclusion
thresholds, and there are often systematic influences of
these parameters on the results of any measurements in
the resulting network. This can lead to selective bias, as in
the case of the dorsal cingulate gyrus in the brain network,
whose betweenness value (a popular measure of node im-
portance) depends very much on whether it is treated as
one node DCG or as two nodes DCG.L and DCG.R (see
Sect. 5.3). The effect can even lead to completely artificial
features like in the climate network, as depicted in the
centre of Figures 3A, 3B.

Because of the above observations, our purpose in
this paper is to improve the estimation or approximation
power of common network measures by introducing into
their calculation a suitable kind of weighting of all indi-
vidual nodes. For this, we use node aggregation weights
based on, e.g., ROI volume, inverse grid density, mesh cell
size, inverse sampling density, IP address ranges of AS’s,
article length, household size, or a country’s population or
GDP. A suitable choice of weights is sometimes difficult
(e.g., for AS’s or countries) and the weights may have to
be estimated (e.g., in case of sampled state vectors). Our
focus in this paper, however, is not on the derivation of
suitable weights, but on how to make proper use of them
once they are given.

To avoid confusion, we emphasize that there exists a
theory of “weighted networks” [25] in which links instead
of nodes have weights representing quantities like length
or capacity. But that kind of weights and the related the-
ory is of little help here since the type of situation we
are concerned with calls for node weights instead, and we
will see that the corresponding measures differ from those
in the other theory, even if the node weights are somehow
translated into link weights. Actually, some real-world net-
works (like the world trade network) are probably best
described as having both node and link weights, as well
as being directed. In this paper, we are treating the case

Fig. 3. (Colour online) Comparison of unweighted and
weighted (n. s. i.) versions of degree (A, C) and clustering co-
efficient (B, D) in the northern polar region (Lambert equal
area projection) of a global climate network representing cor-
relations in temperature dynamics. The high values at the pole
in (A, B) turn out to be an artefact of the increasing grid den-
sity toward the pole, as demonstrated by (C, D).

of undirected networks with node weights, but the same
methodology can easily be applied to transform network
measures that already make use of link weights or link di-
rection into node-weighted versions that use node weights
as well.

1.2 Climate networks

To exemplify our approach, assume that the domain of
interest is the set of all points on the Earth’s surface and
the significant linear correlations between the surface air
temperature time series at pairs of such points. This can
be interpreted as a “network” (mathematically, an infi-
nite simple graph) with uncountably many nodes and (un-
known) links. However, we only observe data for a finite
subset of points, say those 64 082 regular grid points that
have integer latitude and longitude degrees (which is a
fairly common grid type in Earth sciences). Then the set
of significant linear correlations between the temperature
time series at these sampled points defines a (finite) cli-
mate network [10,11,26–31] whose properties, as measured
by common network statistics, are somehow hoped to be
representative of related properties of the temperature dy-
namics on the whole globe. E.g., the degree of a node in
the finite network corresponds to how much surface area
this point is correlated to in the whole domain of interest.
When degree is computed in the standard way, however,

http://www.epj.org
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A B

C D

latitude (°N) latitude (°N)

unweighted CN

unweighted BN

n.s.i. CN

n.s.i. BN

Fig. 4. Comparison of unweighted and n. s. i. versions of four common local network measures (see Sect. 5 for definitions)
in a real-world climate network (CN) and a benchmark network (BN). (A) degree kv, k∗

v , (B) clustering coefficient Cv, C∗
v ,

(C) closeness centrality CCv, CC∗
v , and (D) Newman’s random walk betweenness NBv , NB∗

v . Measures are averaged along
bands of equal latitude and plotted against latitude. Real-world global climate network representing correlations in surface air
temperature dynamics. Benchmark network defined on the same grid with independent link probabilities depending on distance
alone. The benchmark lines show that the observed increase in the unweighted degree and clustering coefficient near the poles
at ±90◦ latitude is mainly due to the vanishing node weight of cos(latitude), whereas the effect on closeness centrality is much
smaller. In case of Newman’s random walk betweenness, the slight increase of the unweighted version towards the equator in
the benchmark network reflects the fact that those nodes represent larger surface areas, hence a random walk on the globe will
cross this area more often. This explains in part why in the unweighted version in the real-world network the central peaks are
more prominent than in the n. s. i. version.

the resulting large regional differences will mostly reflect
the strongly differing amounts of surface area each node
represents (small area per node at the poles, large area per
node on the equator), instead of indicating “real” regional
differences in the connectivity of the underlying domain
of interest (the temperature field).

The significance of observed features can often be as-
sessed by comparing results with those obtainable in a
similar “benchmark” network in which the links have
been replaced by a spatially homogeneous link distribu-
tion, which was done, e.g., in [32] to show how the under-
lying geometry of a cortical network influences network
statistics. Similarly, for our climate network, a perfectly

homogeneous link distribution in the domain of interest
(like the one in which two points are linked iff their angu-
lar distance is less than five degrees) would lead to regional
differences of the degree distribution in the grid-based net-
work, just because its node density and therefore its link
density increase towards the poles (Fig. 4, dashed lines).
For the same reason, the standard local clustering coeffi-
cient shows an artificial increase towards the poles. Fig-
ures 3A, 3B shows such artifacts in a real-world climate
network similar to that of [11]. We will see below that this
effect can be avoided by using a node weight proportional
to the inverse node density (= cosine of latitude), and by
using the sum of all neighbour’s weights as a measure of

http://www.epj.org
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degree (this measure being called area-weighted connec-
tivity in [26]), and the weighted proportion of interlinked
pairs of neighbours of a node as a measure of clustering,
instead of the classical degree measure and clustering co-
efficient.

Figures 3C, 3D shows the meaningful regional differ-
ences in the example real-world climate network that re-
main after the artifacts have been removed in this way. In
that example, we can check the validity of this by compar-
ing these results to those obtained from a climate network
based not on a latitude-longitude grid but on a “geodesic”
grid that has an approximately homogeneous node density
all over the globe (see also [33], results not shown here for
brevity). Using the classical degree and clustering mea-
sures in the latter, homogeneously sampled network gives
results almost identical to those in Figures 3C, 3D rather
than 3A, 3B. Such a change of grid, however, usually re-
quires some kind of interpolation of the available data,
which can introduce other problems and is obviously only
possible for specific kinds of network constructions.

1.3 Outline

Surprisingly, to our best knowledge, the by now vast lit-
erature on complex networks contains almost no node-
weighted measures, except for the above-mentioned area-
weighted connectivity measure, whereas other techniques
(e.g., finite elements) and methods of data analysis (e.g.,
empirical orthogonal functions, a weighted version of prin-
cipal components analysis [34]) often use some weighting
or other adjustment to avoid similar biases or artifacts.

In this paper, we therefore present a fairly general
strategy for deriving node-weighted versions of network
measures that can be expected to give estimates or ap-
proximations of properties of the domain of interest that
are in a certain sense consistent whenever the network is
of the type in which the links can be interpreted as indi-
cating some kind of similarity or “close” relationship, as
it is more or less the case in all the cited examples. The
approach will not be directly useful for other kinds of net-
works, e.g., if links represent some kind of “complementar-
ity” instead of similarity, like in most bipartite networks.
Also, it will not be applicable when only the network as
a whole can be considered “representative” of the domain
of interest, but when individual nodes cannot be consid-
ered representative of some well-defined part of it, as will
often be the case when network sampling methods such as
random node or link sampling or snowball sampling are
used (related estimation problems are treated in [6,35]).

We then apply this strategy to many of the commonly
used network measures and illustrate the effects in a num-
ber of example networks from the above list. Fortunately,
there is a quite simple pragmatic approach to finding use-
ful weighted versions of network measures which allows us
to postpone a more detailed analysis of the statistical esti-
mation or numerical approximation properties for further
research. This approach is axiomatic rather than analytic
in that it requires our measures to fulfil an easily verified
condition of node splitting (or twin merging) invariance.

After stating preliminary matter in Section 2 and giv-
ing more details on our illustrative example networks
(Sect. 3), we will introduce this concept formally and
shortly relate it to a statistical and approximation inter-
pretation in Section 4. We then proceed with presenting a
comprehensive set of according network measures in Sec-
tions 5, 6, illustrating each one’s effect in those example
networks for which the respective network measure has
been considered important in the literature, but not aim-
ing at analysing each example network with the full set of
measures. We end with a more detailed description of an
application to climate networks in Section 7 and a con-
clusion (Sect. 8). In two Appendices (online), we present
some additional measures, give versions of the new mea-
sures that allow for a simpler comparison with their un-
weighted counterparts, and shortly discuss how the related
parameter of typical weight can be estimated.

2 Preliminaries

Let G = (N , E) denote a finite undirected simple graph
(the network under consideration) with known node or ver-
tex set N , edge or link set E ⊆ {{i, j} : i �= j ∈ N},
and adjacency matrix A = (aij)i,j∈N , where aij ∈ {0, 1},
and aij = 1 iff {i, j} ∈ E . For simplicity, we assume that
N = {1, . . . , N} for some natural number N > 1. The
neighbours of a node v ∈ N , i.e., the members of v’s (punc-
tured) neighbourhood

Nv = {i ∈ N : aiv = 1} = {i ∈ N : avi = 1} (1)

are those nodes that v is directly linked to by an edge.
We will also use the extended adjacency matrix A+ =
(a+

ij)i,j∈N = A + I with

a+
ij = aij + δij , (2)

where I = (δij)ij is the identity matrix and δ the
Kronecker symbol, with δij = 1 for i = j and δij = 0
for i �= j. Moreover, we will need the extended or unpunc-
tured neighbourhood1

N+
v =

{
i ∈ N : a+

iv = 1
}

= Nv ∪ {v}. (3)

In addition, we will assume that each node v is assigned a
positive real-valued (aggregation) weight wv. As many of
our measures will involve unweighted or weighted means
over nodes or pairs of nodes, we also introduce the total
weight

W =
∑

i∈N wi (4)

1 Note that in classical mathematical topology, the term
“neighbourhood of a point” implies that the point itself is in-
cluded, otherwise one speaks of a “punctured” neighbourhood.
In the network literature, the term “neighbour” also sometimes
refers to nodes not directly linked. In our terminology, a node is
not a neighbour of itself but still a member of its unpunctured
neighbourhood.
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and a shorthand notation for (weighted) averages of func-
tions of nodes or node pairs:

〈g(v)〉v =
1
N

∑
v∈N g(v),

〈g(v)〉wv =
1
W

∑
v∈N wvg(v),

〈h(i, j)〉ij =
1

N2

∑
i∈N

∑
j∈N h(i, j), and

〈h(i, j)〉wij =
1

W 2

∑
i∈N

∑
j∈N wih(i, j)wj . (5)

Most of the remaining notation will follow the reviews of
Newman [1], Boccaletti [2], and da F. Costa [3]. In cases
where a measure is commonly normalized using a factor
of 1/(N − 1), 1/(N − 1)(N − 2), etc., we will use instead
the factors 1/N , 1/N2 etc., to keep things simpler.

3 Examples of networks with nodes
of different size

As stated in previous sections, node weights are ubiqui-
tous for graph representations of complex systems. We will
show the applications of our weighted measures to various
example networks, ranging from the human brain, the in-
ternet, over Wikipedia to world trade. Firstly we describe
the details of the constructed weighted networks. The fo-
cus application to climate networks will be presented in-
dividually in Section 7.

3.1 Human brain

Functional Magnetic Resonance Imaging (fMRI) time se-
ries have been widely used to study neural activities in the
brain from a network perspective. A node is represented
by a cortical region of interest, while a link is often char-
acterized by some statistical association measuring the
correlation between different regions (i.e., linear Pearson
correlation, nonlinear mutual information, or frequency
dependent correlation by Wavelets [7], etc.). We consider
two regions are connected if their correlation exceeds a
threshold, which can be either based on the correlation
values or in terms of probability under some appropri-
ate null hypothesis. The resulting functional connectiv-
ity of nervous systems has been shown to display high
clustering and short path length which confers a capa-
bility for both specialized or modular processing in local
neighbourhoods and distributed or integrated processing
over the entire network [7,9]. The cerebral cortex is a thin
folded sheet tightly confined by the skull and is thus an
archetypal example of a complex network that is strongly
constrained by geometry. The understanding of the prop-
erties captured by a variety of network measures (i.e., high
clustering, short path length, motifs, and modularity, etc.)
has been pointed out to be very limited because the role of
the spatial geometry has been largely underestimated [32].

Many anatomical features show distance-dependent prop-
erties, e.g., the density of corticocortical neural connec-
tions, volume, processing steps, signal travel times, and
genetic encoding needed to specify connectivity.

We re-examine a version of the network of functional
connections between differently sized Region of Interests
(ROIs) in the human brain as it was described in [7]. Af-
ter some appropriate preprocessing on the acquired fMRI
data, the network consists of 90 cortical and subcortical
time series extracted from each individual. The resulting
graph is shown in Figure 1, where the weight of a node is
represented by its associated volume of the ROIs.

3.2 Internet

A well-known type of internet mapping is obtained by con-
sidering so-called autonomous systems (AS’s). On the AS
level, each node represents an AS while each link between
two nodes represents the existence of a peer connection
among the corresponding AS’s in Border Gateway Proto-
col (BGP) routing tables. Traditionally, much interest is
in identifying a possible power law P (kv > x) ∼ x1−γ for
the degree distribution [12,13,15]. Power laws have been
reported by different studies of AS maps, and their ex-
ponents seem to be stable over a number of years [12,15],
which could help to devise a novel class of dynamical mod-
els of the internet. However, most studies use BGP data
collected by the Oregon route views project only, which
may provide an incomplete picture of the internet connec-
tivity [14].

Whereas in the literature, usually each AS is treated
the same despite the considerable differences in size (three
orders of magnitude), we associate here with each AS a
node weight proportional to the size of the IP address
space allocated to that AS in terms of Classless Inter-
Domain Routing (CIDR) prefixes, a common measure of
network size that can be used as an approximation of the
fraction of the internet represented by that AS (although
better measures might be possible). In other words, we
consider the set of all IP addresses allocated by CIDR as
our domain of interest G0 which we study be means of a
network G of AS’s that each represent a certain part of G0.
To construct our network, we used the January 2010 BGP
routing table snapshot (http://archive.routeviews.
org/oix-route-views/\discretionary-2010.01/
oix-full-snapshot-2010-01-27-1200.bz2) from
the Oregon route views project, and a corresponding
CIDR prefix allocation snapshot from (http://www.
cidr-report.org/as2.0/aggr.html), giving a network
of over 30 000 nodes.

3.3 Wikipedia

Wikipedia is an intriguing research object from a sociolo-
gist’s point of view: nodes are articles which are published
by a number of independent individuals in various lan-
guages, edges are reference hyperlinks which cover topics
they consider relevant. Several models for the growth of

http://www.epj.org
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Wikipedia have been proposed to mimic the plausible pref-
erential attachment mechanisms that might explain the
apparent scale-freeness of the resulting networks [16,17].

As another example network, we used as nodes all
33 359 articles containing the word “physics” from the
30 July 2010 snapshot of the English language version of
Wikipedia, and made an undirected link between two ar-
ticles if either references the other, resulting in an average
degree of 31.9. Other authors study directed Wikipedia
networks [16,17], but treating it as an undirected network
can be partially justified by the fact that in Wikipedia one
can follow references backwards using the function “what
links here”. Since the individual articles represent quite
different amounts of text (between one and 283 kB), it is
straightforward to use their size in characters as the node
weights wv.

3.4 World trade

Finally, we also consider for illustration a network of coun-
tries where two countries are linked when they trade con-
siderable amounts (similar to [20]), e.g., if the total value
of their mutual reported imports and exports in 2009 ac-
counted for at least 10% of the total reported foreign trade
value of at least one of the two countries, based on data
from comtrade.un.org. Such a network is shown in Fig-
ure 2. The topological characterization of the world trade
web (WTW) is of primary interest for the modeling of
crisis propagation at the global level, and it has been re-
ported in [20] that the unweighted WTW displays some
typical properties of complex networks, i.e., scale free de-
gree distribution, small-world properties, and high clus-
tering coefficients. As node weights, we use either popu-
lation or gross domestic product in 2008 (as reported by
the IMF), both showing considerable differences.

A much more realistic model of the world trade net-
work would of course use weighted and directed links rep-
resenting actual imports and exports, in addition to node
weights, so one cannot attach much real-world importance
to the exemplary results that we will present here for il-
lustration with this simplified network.

4 Approaches to node weighting in network
measurements

4.1 Statistical interpretation

In many cases the nodes N and links E of the studied
network G are simply a subset from a larger (maybe in-
finite) network G0 with nodes N0 and unknown links E0

that constitute the domain of interest whose structural
and topological properties we are interested in. Since of-
ten N0 is a manifold like the Earth’s surface, the brain
volume, or a phase space, we will call the elements of N0

points here although the following consideration also ap-
plies to discrete sets N0 like that of all households in a
society. If we can interpret the node set N to be a sam-
ple from the population of points N0, resulting from some

sampling procedure, then we might adopt a classical sta-
tistical approach and consider any measurements in the
sample network G as estimates of certain statistics of the
population network G0 that we are truly interested in.
E.g., the classical measure of degree of a node v ∈ N ,

kv = kv(G) = |Nv| =
∑

i∈N aiv, (6)

could be interpreted as the simplest estimator of the num-
ber (or proportion) k0(v) of points in N0 to which v is
linked in G0. If, however, the sampling procedure is such
that certain points v ∈ N0 are selected for the sample
with a higher individual sampling probability pv than oth-
ers, basic statistics tells us that a much better estimator
of k0(v) is a weighted sum,

k̃v =
∑

i∈Nv
wi =

∑
i∈N wiaiv (7)

with suitable node weights wv � 0. As in the well-known
Horvitz-Thompson estimator of a sample mean, the op-
timal weights wv are given by inverse probability weight-
ing, i.e., they are inversely proportional to the sampling
probabilities, wv ∝ 1/pv. E.g., if G is a climate network
constructed from meteorological stations and the proba-
bility pv of having a station in location v is proportional
to the local human population density, then any analysis
of G should assign a node at v a weight proportional to
the inverse human population density, to make sure that
the climates in sparsely and densely populated areas are
equally represented. In some cases, statistical considera-
tions can also motivate more sophisticated choices of the
weights wv, like the reliability-adjusted Kriging weights
used for meteorological station data in [36], equation (15).

If we were to follow this statistical approach more thor-
oughly, we would try to identify each property of the do-
main of interest we are interested in with some statis-
tics f0 of G0, and then use a suitably weighted estimator f̃
of f0 that is at least statistically consistent (i.e., converges
to f0 in a certain sense as N increases), hopefully also
unbiased (i.e., has an average error of zero) and efficient
(i.e., has small variance), and maybe even robust (i.e., is
not very sensitive to only local changes in the network).
Verifying these properties for a large number of different
network measures is however a research program requir-
ing much analytical effort beyond the scope of a single
paper. Moreover, it would likely require some complicated
continuity assumptions on G0 that would restrict the ap-
plicability of those measures considerably, which is why we
pursue a simpler approach here to find suitable weighting
schemes for individual network measures.

Note that in principle, the above estimator k̃v can
be interpreted as a special case of the strength sv =∑

i∈Nv
wvi of a node v in a directed, (link-)weighted net-

work in which we simply use the node weight wi of the
target node as the link weight wvi of the directed link.
For other network measures, this interpretation is, how-
ever, not helpful since the measure might have no counter-
part for directed weighted networks, or that counterpart
is unsuitable for our problem (as in case of the clustering
coefficient, see below).
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v

Fig. 5. (Colour online) A set N of nodes (circles) representing
cells of different size of the domain of interest (dashed trian-
gles). In many applications, a node v will be linked to one
or more smoothly bounded regions of the domain of interest
(red surrounded regions), containing v itself and some other
nodes (filled circles; arrows show the resulting links in the net-
work G). The red surrounded area of size k0(v) can then be
approximated by the grey shaded area of size k̃v, or more ac-
curately by the grey shaded area plus v’s own cell area, giving
the estimate k∗

v . The classical degree kv is just the number of
filled circles.

4.2 Numerical approximation

If the domain of interest G0 provides some notion of (ge-
ometric) distance (like any spatially embedded network
does), an alternative approach is to consider each node
v ∈ N as representative for a small cell Rv of points
in v’s geometrical vicinity in N0, whose size (in terms of
some suitable measure, e.g., Lebesgue measure) we de-
note by wv. By geometrical vicinity we mean those points
of the underlying domain of interest that have a small
geometrical distance from v, as opposed to its neighbour-
hood N+

v that consists of those nodes in the network with a
network-theoretic distance � 1. This interpretation would
be adequate, e.g., if N0 is a continuous manifold and N
a subset of points on a grid or derived by some meshing
procedure (e.g., adaptive mesh refinement, [37]).

If, because of the continuity properties of the underly-
ing system, it can be expected that all nodes v′ ∈ Rv are
linked to more or less the same nodes in G0 as v is, then
a natural approximation for an interesting statistics f0

of G0 would use the aggregation weight wv wherever the
formula for f0 involves the node v.

E.g., for the above measure of degree, we could again
use k̃v =

∑
i∈Nv

wi instead of kv = |Nv| to approximate
k0(v), since each node i in v’s G-neighbourhood repre-
sents wi “many” nodes in G0 of which most can be ex-
pected to be linked to v as well (Fig. 5 illustrates this
idea). In the context of climate networks, each node i rep-
resents a portion of the Earth’s surface of relative size
wi = cos (latitude of i), and k̃v is known as area weighted
connectivity [26].

In many cases of continuous domains of interest G0, a
point v ∈ N0 is usually also linked to all or at least most
of the points in its geometrical vicinity. More formally, in
many cases the following local connectedness condition will
hold for some suitable distance function d: for all v ∈ N0

there is ε > 0 such that each point i ∈ N0\{v} with
d(i, v) < ε is linked to v. E.g., if N0 is the Earth’s surface,
and i, j ∈ N0 are linked in G0 iff the surface temperature
time series for i and j exhibit a product-moment corre-
lation coefficient larger than some threshold value, then
the smoothness of the underlying physics will imply the
above.

In such a network, an alternative approximation
to k0(v) would then be

k∗
v = k̃v + wv =

∑
i∈N+

v
wi =

∑
i∈N wia

+
iv, (8)

which can be expected to be a better approximation if the
mesh is fine enough. This estimator can also be interpreted
as a classical numerical approximation to the integral of
the indicator function of v’s unpunctured neighbourhood
in G0 (see Fig. 5 again).

However, for many of the more complex network mea-
sures we will study below, e.g., random walk based mea-
sures or spectra, it will not be possible that easily to
interpret our weighted versions of those measures as ap-
proximations to integrals, and a thorough analysis of their
approximation qualities would require much technical ef-
fort. This is why we rather pursue a third, more pragmatic
approach, which is motivated by a simple property that
both the statistical and the numerical approximation in-
terpretations have in common.

4.3 Pragmatic axiomatic approach

In both the statistical and the approximation approach,
it is clear that the estimation or approximation should
usually become better when the resolution of G as a de-
scription of the domain of interest G0 is increased by re-
placing some or all nodes by a larger set of nodes rep-
resenting smaller parts of G0. Such refinements would
usually change the corresponding inverse sampling densi-
ties or cell sizes that we use as our aggregation weights wv.
Let us now consider the case of sufficiently high resolution,
i.e., where the sample is dense enough or the cell sizes are
small enough to resolve all structural features of G0 that
are considered relevant, so that we do not expect there to
be considerable inhomogeneities inside the region of G0

represented by each individual node. Now imagine that an
elementary refinement of N was performed in which only
one old node s ∈ N was replaced by two new nodes s′,
s′′ ∈ N0 which together represent more or less the same
subset of N0 as s did. Then this would leave the aggre-
gation weights wi of the other nodes i ∈ N\{s, s′, s′′}
mostly unchanged, whereas the weights ws′ and ws′′ of
the new nodes would approximately sum up to the for-
mer ws. Also, because the resolution was assumed to be
sufficient already, s′ and s′′ would be linked to more or
less the same nodes as s was, and most likely also to each
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s
s′

s′′G G′

Fig. 6. (Colour online) The operation of node splitting replaces
a node s of weight ws in network G with two linked nodes s′, s′′

of weights ws′ + ws′′ = ws which get the same neighbourhood
as s had, giving network G′. The inverse operation of twin
merging transforms G′ back into G.

other. In that case, a good estimate or approximation f̃ to
some statistic f0 of G0 should probably become somewhat
more precise, but should certainly not be changed much
by such an elementary refinement. This intuitive reasoning
can be turned into a simple axiomatic guiding requirement
when we idealize the above situation as follows.

Let G = (N , E) be a simple graph with weights wi > 0
for all i ∈ N , and let s ∈ N be some “old” node, s′, s′′ /∈ N
two “new” nodes, ws′ , ws′′ > 0 their weights, and ws′ +
ws′′ = ws. Then the “refined” graph G′ = (N ′, E ′) with

N ′ = N\{s} ∪ {s′, s′′}
and E ′ = {{i, j} ∈ E : i, j �= s}

∪ {{i, s′} , {i, s′′} : {i, s} ∈ E} ∪ {{s′, s′′}}
(9)

and with weights wi for all i ∈ N ′ will be called a node
splitting refinement of G. That is, G′ is derived from G by
“splitting” the node s into two new interlinked nodes s′,
s′′ with the same total weight as s and linking those two
to exactly those nodes to which s was linked (see Fig. 6).

Now a (global) network measure f will be called node
splitting invariant (n. s. i.) iff

f(G′) = f(G) (10)

for all pairs of networks G, G′ and all weight functions w
for which G′ is a node splitting refinement of G. Likewise,
if fi is a network measure which is defined for nodes i,
then fi will be called node splitting invariant iff

fi (G′) = fi(G) and fs′ (G′) = fs′′ (G′) = fs(G) (11)

for all such G, G′, w and all i ∈ N\{s, s′, s′′}. Similar
definitions are possible for measures with more than one
argument but are not needed here. In other words, a n. s. i.
measure is unaffected by any node splitting refinements.
This is, however, not to say that we actually perform any
refinements or node splittings when applying a node split-
ting invariant measure. Rather, the notion of node split-
ting must be thought of as only a hypothetical, idealized
operation that could be applied in principle, and the con-
sistency requirement of node splitting invariance is only
to make sure that the node weights are used in a proper
way that is suitable for links which represent some kind
of “similarity”. In other words, to define a n. s. i. measure
only requires us to analyse what would happen if nodes

were split in the suggested way. To apply a n. s. i. measure
to a given network, one can just use the corresponding for-
mula as one would with an unweighted measure, without
any need to think about node splitting.

In the context of coarse-graining, node splitting invari-
ance can also be called twin merging invariance, requiring
that f should not change whenever two twins s′, s′′ with
weights ws′ , ws′′ are merged into one node s with weight
ws = ws′ + ws′′ , where two linked nodes s′, s′′ are called
twins iff they have the same neighbourhood, N+

s′ = N+
s′′ .

While node splitting corresponds to an idealized form of
refinement, twin merging is an idealized form of coarse-
graining and is the inverse operation of node splitting,
hence both notions of invariance are equivalent.

While the above definitions of node splitting and twin
merging are suitable for networks in which links represent
a kind of similarity or direct connection, for which it is
natural to require that twins are linked and to assume
that the parts of a split node are linked, other types of
networks might call for a different definition of node split-
ting and twin merging. If, e.g., links represent some kind
of “complementarity” instead of similarity, a natural kind
of splitting would leave s′ and s′′ unlinked, and the corre-
sponding definition of “twin” would require that twins are
not linked. Such a variant would lead to weighted network
measures similar but not identical to ours, but we do not
pursue this in the present paper.

An example of a n. s. i. measure is the above-defined
n. s. i. degree k∗

v =
∑

i∈N+
v

wi, and that it is indeed n. s. i.
is easily seen from the fact that

N+
s′ (G′) = N+

s′′ (G′) = N+
s (G)\{s} ∪ {s′, s′′} ,

N+
i (G′) = N+

i (G)\{s} ∪ {s′, s′′} ,

and N+
j (G′) = N+

j (G) (12)

for all i ∈ Ns(G) and j ∈ N\N+
s (G).

Note that the definition of node splitting invariance
aka twin merging invariance does not at all rely on the for-
mal specification of an underlying domain of interest G0,
but it depends on the network G and the weights wi alone,
which makes this tool much easier to use than estimation
theory or approximation theory. Nevertheless, a conjec-
ture and working hypothesis of this paper is that n. s. i.
measures are the natural candidates for good estimation
or approximation of the corresponding properties of a po-
tentially underlying domain of interest, and that they will
usually prove to be statistically consistent and exhibit
good convergence properties when the domain of inter-
est and the sampling or meshing procedures fulfil some
suitable continuity or measurability properties and when
the aggregation weights wi are chosen accordingly.

In the following, we will therefore present n. s. i. ver-
sions f∗ of a number of local and global network mea-
sures f that can be found in the literature, and we will re-
fer to the possibly underlying domain of interest only when
motivating some interpretations of these measures, but
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without formally defining that statistics f0 of G0 which is
supposed to be estimated or approximated by f∗.

The basic construction mechanisms we will use are

(i) to sum up aggregation weights wherever the original
measure counts nodes;

(ii) to use unpunctured neighbourhoods N+
v wherever

the original measure uses punctured neighbour-
hoods Nv (in other words, to consider v as linked
to itself);

(iii) to also allow for equality of i, j wherever the original
measure involves a sum over distinct nodes i, j; and

(iv) to “plug-in” a n. s. i. version of a measure g wherever
this g is used in the definition of another measure f .

Both mechanisms (i) and (ii) were used in the definition
of k∗

v above, and an example for mechanisms (iii) and (iv)
will be given in the following section when we will consider
the clustering coefficient.

5 Local measures

A network measure fv = fv(G) that is defined for each
node v ∈ N will be called local here. (Note that we always
understand the terms “neighbour” and “local” as referring
to the network topology, not to some possibly underlying
geometry. So, local neighbours might be geometrically far
apart.)

5.1 Degree

We already treated the degree measure kv = |Nv| and
defined the n. s. i. degree of v as

k∗
v =

∑
i∈N+

v
wi. (13)

Let us compare kv and k∗
v in two example networks.

In our human brain example network, the nodes with
the highest degree kv are the right lingual gyrus and the
left precuneus region (LING.R and PCUN.L, see [7] for
these abbreviations), connected to 32 and 31 of the other
89 nodes, i.e., to about one third of the nodes. The vol-
ume of the 90 individual ROIs varies by a factor of 23
(Fig. 1) If it is used as a node weight for n. s. i. degree,
the right lingual gyrus and the left precuneus again have
the largest values, but these are now k∗

v ≈ 0.46W , showing
that in reality, both regions are functionally connected not
to one third but rather to almost half the entire brain (in
terms of volume). The third most connected node in terms
of k∗

v (volume) is the left middle frontal gyrus (MFG.L,
which seems consistent with other measures of node im-
portance as reported in [7]), but in terms of kv (nodes) it
is the left calcarine cortex (CAL.L). Since the number of
linked nodes basically depends on the level of detail in the
used parcellation of the brain, kv can change considerably
for different parcellations even if the ROI represented by
node v remains unchanged, and kv seems to be influenced
much more than k∗

v by the choice of parcellation.

Fig. 7. (Colour online) Log-log plot of the complementary cu-
mulative distribution function of degree kv (thin black line),
node weight wv (dashed line), and n. s. i. degree k∗

v (thick blue
line) in the routing network of autonomous systems in the in-
ternet. Power laws would appear linear.

In the internet example network, the earlier find-
ings of power laws for the degree distribution reported
in [12,13,15] are supported by the apparent linear rela-
tionship in the log-log plot in Figure 7 (thin black line).
In other words, the distribution of the number kv of linked
AS’s of a given AS v seems to follow a power law. How-
ever, also the distribution of the size wv of a given AS v
in terms of CIDR prefixes seems to follow a power law,
as can also be seen in Figure 7 (dashed line), and the lin-
ear correlation coefficient between ln kv and lnwv is high
(≈0.5), so the power law for kv might be a consequence
of the one for wv. If we ask for the share of the internet
(instead of the number of AS’s) a given AS v is linked to,
k∗

v/W seems a more accurate estimate of this than kv/N ,
and the findings are different: the AS with highest kv also
has the highest k∗

v , but while it is linked to only 7.9% of
all AS’s (since kv = 0.079N), it seems to be linked to ap-
prox. one fourth of all IP adresses (since k∗

v = 0.24W ).
When plotting the probability that a randomly chosen
CIDR prefix belongs to an AS that is linked to other AS’s
with more than x total CIDR prefixes, this does no longer
show a clear power law behaviour (Fig. 7, thick blue line).
Also, ln k∗

v is less strongly correlated (≈0.3) to ln wv than
ln kv is, and less strongly correlated (≈0.4) to ln kv than
ln wv is.

5.2 Clustering coefficient

The local clustering coefficient of v,

Cv =

∑
i∈Nv

∑
j∈Nv

aij

kv (kv − 1)
=

N2 〈aviaijajv〉ij
kv (kv − 1)

∈ [0, 1],

(14)
is the probability that two nodes drawn at random from
those linked to v are linked with each other. We get
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Fig. 8. (Colour online) Clustering coefficient Cv vs. n. s. i. clus-
tering coefficient C∗

v of those nodes in the functional human
brain network that have at least two neighbours, showing con-
siderable differences (Pearson correlation is � = 0.65). Disk
area is proportional to node weight (ROI volume).

a weighted version by employing all four mechanisms
(i)−(iv), giving the n. s. i. local clustering coefficient

C∗
v =

W 2
〈
a+

via
+
ija

+
jv

〉w

ij

k∗2
v

∈
[
wv (2k∗

v − wv)
k∗2

v

, 1
]
⊆ [0, 1],

(15)
which estimates the probability that two weight units (or
points in terms of G0) drawn at random from the part of
the network linked to v are linked with each other. Because
we use A+, C∗

v tends to be larger than Cv if kv is small, and
it is defined for all nodes while Cv only makes sense when
kv > 1. If the weights vary considerably, C∗

v and Cv can
rank the nodes quite differently, although neither needs
to be significantly linearly correlated with wv. C∗

v and Cv

can also differ considerably when the weights inside Nv

vary strongly.
All these effects can be seen nicely in our brain exam-

ple network (Fig. 8). The right thalamus region (THA.R),
e.g., is in the top half (rank 37) according to its Cv of 0.54,
but almost at the bottom (rank 86 out of 90) according
to its C∗

v of 0.53, although the absolute values are almost
equal. This is because among its 21 neighbours, it is rather
the smaller ones (like THA.L and CAU.R) that are linked
with many other neighbours.

One might think that similar to the case of degree, also
a directed version of the formula for the local clustering co-
efficient from the theory of (link-)weighted networks [25],
which is cw

v =
∑

i∈Nv

∑
j∈Nv

aij(wvi + wvj)/2sv(kv − 1),
could be a good candidate if the directed link-weights are
defined as wvi = wi, giving cw

v =
∑

i∈Nv

∑
j∈Nv

aij(wi +
wj)/2sv(kv − 1). But it is easy to see that this does not
behave well under node splitting or twin merging since
a linked pair i-j contributes wi + wj instead of wiwj . If,
e.g., Nv = {i, j, s′, s′′} with wi = wj = ws′ = ws′′ = 1,
aij = 0, and s′, s′′ are twins linked to i but not to j, then

cw
v = Cv = 3/6, but after merging the twins s′, s′′ into

one new node s with ws = 2, one has kv = 3, sv = 4, and
cw
v = (wi + ws)/2sv(kv − 1) = 3/16, much smaller than

before. In contrast, C∗
v = 19/25 before and after the twin

merging.

5.3 Measures of centrality and betweenness

Many measures try to assess several aspects of “node im-
portance”. Based on the distances of one node v to all
others, we consider three variants of closeness centrality,

CCv = 1/ 〈dvi〉i , CC′
v =

〈
2−dvi

〉
i
, CC′′

v = 〈1/dvi〉i ,

(16)
the latter also being called the efficiency of v, where dvi

is the number of links on a shortest path from v to i,
or, if there is no such path, either ∞ or N , depending
on the convention chosen [3,38–40]. A weighted version
of CCv should give us the inverse average distance of v
from other weight units or points rather than from other
nodes. But for this to become n. s. i., one has to interpret
(somewhat peculiarly) each node to have unit (instead of
zero) distance to itself. This is because after an imagined
split s → s′, s′′, the two parts s′, s′′ of s have unit not zero
distance. The n. s. i. distance function is hence given by

d∗vv = 1 and d∗vi = dvi for i �= v, (17)

i.e., the zeros on the diagonal of the ordinary distance ma-
trix are replaced by ones to get the n. s. i. distance matrix,
without changing any off-diagonal entries. Using this, we
can derive v’s n. s. i. closeness centrality measures as

CC∗
v =

1
〈d∗vi〉wi

=
W

∑
i∈N wid∗vi

=
W

wv +
∑

i∈N widvi
,

(18)
CC′∗

v = 〈2−d∗
vi〉wi , and CC′′∗

v = 〈1/d∗vi〉wi . All take values
in [0, 1].

In the internet example network, CCv and CC∗
v are

generally quite small, vary only little, and are highly cor-
related. Still, both measures lead to different rankings of
the most central nodes (Fig. 9).

Also in our Wikipedia example network, CCv and CC∗
v

were not very discriminatory, but CC′
v and CC′∗

v were.
Figure 10 depicts their relationship for the most central
nodes, again showing considerable differences in ranks.
According to CC′

v, the top ten central articles in de-
creasing order are those named “Physics”, “Mathemat-
ics”, “Chemistry”, “Germany”, “Science”, “Physicist”,
“Quantum mechanics”, “Albert Einstein”, “Astronomy”,
and “Engineering”, while according to CC′∗

v the list
is “Physics”, “Mathematics”, “Germany”, “Chemistry”,
“Science”, “Japan”, “Italy”, “Albert Einstein”, “Russia”,
and “Astronomy”. “Physicist” for instance has the sixth
highest value of CC′

v but only the 21th largest value
of CC′∗

v because it is linked to a very large number (7.6%
of the nodes) of comparatively short articles (account-
ing for 5.5% of the total text) on individual scientists,
so that CC′

v treats them as a larger part of the network
than CC′∗

v does.
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Fig. 9. (Colour online) Closeness CCv vs. n. s. i. closeness CC∗
v

of those nodes in the internet network (see text) with the high-
est values. Disk area is proportional to node weight (no. of
CIDR prefixes).

Fig. 10. (Colour online) Exponential closeness CC′
v vs. its

n. s. i. version CC′∗
v of those Wikipedia articles on physics (see

text) with the highest values. Disk area is proportional to node
weight (article size in characters).

Other, somewhat more sophisticated importance mea-
sures depend on the paths between all other nodes that
lead through a given node v. The (shortest path) between-
ness of v is the proportion of shortest paths between ran-
domly chosen nodes a, b that lead through v:

BCv = 〈nab(v)/nab〉ab ∈ [0, 1], (19)

where nab is the total number of shortest paths from a
to b, and nab(v) is the number of those paths that pass
through v as an inner node. Formally, nab can be written
as a sum over all node tuples (t0, . . . , tdab

) with t0 = a
and tdab

= b, where the summands are either zero or one,
depending on whether each t� is linked to its successor
t�+1, for � = 0, . . . , dab − 1. As the latter condition can be

v

Rv

yes

no

G0

Fig. 11. Interpretation of n. s. i. shortest path betweenness as
the probability density that a randomly chosen shortest path
(grey curves) between two randomly chosen points (grey dots)
in the domain of interest G0 passes through a randomly chosen
point (black dot) in the area Rv (dashed region) represented
by v (black circle).

written as a product of elements of the adjacency matrix,
we have:

nab =
∑

(t0,...,tdab)∈Ndab+1

t0=a, tdab
=b

∏dab

�=1 at�−1t�
. (20)

A similar formula holds for nab(v), only that for some m
in 1 . . . dab − 1, tm must equal v:

nab(v) =
∑dab−1

m=1

∑

(t0,...,tdab)∈Ndab+1

t0=a, tm=v, tdab
=b

∏dab

�=1 at�−1t�
. (21)

When s is hypothetically split into s′ + s′′, any short-
est path through s becomes a pair of shortest paths, one
through s′ and the other through s′′. Also, a shortest
path from s′′ to some b �= s′ will never meet s′. Thus,
to make BCv n. s. i., it suffices to make nab and nab(v)
n. s. i. by making each path’s contribution proportional to
the weight of each inner node (that is, to the product of
these weights!), where in case of nab(v) we have to skip wv

in this product:

n∗
ab =

∑

(as above)

at0t1

∏dab

�=2

(
wt�−1at�−1t�

)
,

n∗
ab(v) = 1

wv

∑dab−1
m=1

∑

(as above)

(
at0t1

∏dab

�=2

(
wt�−1at�−1t�

))
.

(22)

The n. s. i. shortest path betweenness

BC∗
v = 〈n∗

ab(v)/n∗
ab〉wab ∈ [0, 1/wv] (23)

can then be interpreted as an estimate of the probability
(or probability density) that a randomly chosen shortest
path between two randomly chosen points in the under-
lying domain of interest G0 passes through a specific ran-
domly chosen point in the area Rv represented by v, as
illustrated in Figure 11. The product wvBC∗

v then esti-
mates the probability that such a path passes through
any point in Rv, which is not n. s. i. but is additive under
node splitting: ws′BC∗

s′ + ws′′BC∗
s′′ = wsBC∗

s .
Newman [41] gives an O(|N ||E|)-time algorithm to

compute BCv for all v, based on Dijkstra’s algorithm, and
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this can easily be adapted to compute BC∗
v for all v with

the same algorithmic time complexity.
In our human brain example network, according

to BCv the top ten ROIs in decreasing order are the
nodes TPOsup.R, LING.L, LING.R, TPOmid.L, MFG.R,
TPOsup.L, MFG.L, STG.L, CAU.R, and ORBinf.R, while
according to BC∗

v the list is TPOmid.L, TPOsup.R,
LING.R, LING.L, TPOsup.L, PCL.R, PHG.L, THA.R,
CAU.R, and STG.L. The left and right middle frontal
gyrus (MFG) are missing in the latter list (having ranks 13
and 19) because most shortest paths that lead through
them are between relatively small nodes, (left and bottom
region in Fig. 1), whereas the right thalamus (THA.R)
has a high degree but many of its larger neighbours are
not linked to each other, leading to a large value of BC∗

v .
In this network one can also nicely see the effect of net-
work design choices on network statistics. If we slightly
modify the parcellation and treat the mid-sized left and
right parts of the dorsal cingulate gyrus as one node s in-
stead of two (s′ = DCG.L and s′′ = DCG.R, having quite
similar neighbourhoods), leaving the rest of the network
unchanged, then their BC-values increase considerably
from BCs′ = 0.029 and BCs′′ = 0.036 to BCs = 0.053,
or from 24th and 18th rank to 11th rank. Their BC∗-
values, however, behave rather nicely in that the new value
BC∗

s = .0000144 (rank 19) is approximately the average
of the two old values BC∗

s′ = 0.0000114 (rank 23) and
BC∗

s′′ = 0.0000171 (rank 17). Had DCG.L/R been exact
twins, BC∗ would not have changed at all.

More centrality and betweenness measures will be dis-
cussed in the next subsection and in Section 6.2.

5.4 Measures based on random walks

Several network measures are based upon the idea of a
random walk along the links of a network without isolated
nodes, with all neighbours j of a node i having the same
transition probability

pij = aij/ki. (24)

The crucial ideas in constructing n. s. i. versions of such
measures are to make pij proportional to wj and to allow
the walk to stay at node i (which now also allows for the
existence of isolated nodes):

p∗ij = a+
ijwj/k∗

i . (25)

Such a walk can be thought to approximate a random
walk in G0 which moves to each linked point with the
same probability. If G0 is a continuous domain, this dis-
crete random walk must not be confused with a continu-
ous Wiener process, however. In particular, its individual
steps might bridge long distances in terms of the domain’s
geometry.

With the above transition probabilities, the proba-
bility of visiting or staying inside {s′, s′′} after a split
s → s′ + s′′ is p∗vs′ + p∗vs′′ = p∗vs or p∗s′s′ + p∗s′s′′ =
p∗s′′s′ + p∗s′′s′′ = p∗ss, respectively, which means the walk

is not influenced by the split. With the original transi-
tion matrix P = (pij)ij , the equilibrium distribution and
hence the long-time average relative visiting frequencies
are given by pv = kv/K, where K = N〈kv〉v is twice the
number of links in G. With the n. s. i. transition matrix
P∗ = (p∗ij)ij , the equilibrium distribution is p∗v = k∗

v/K∗,
where K∗ = W 〈k∗

v〉wv .
The Arenas-type random walk betweenness of v, moti-

vated by [42] and based on the idea of searching a target,
is the expected number of visits to v on a random walk
that starts and ends at some randomly chosen nodes a, b:

ABv = 〈ABav(b)〉ab (26)

with AB(b) = (ABij(b))ij =
∑∞

t=1 P′(b)t. Since the walk
is assumed to stop as soon as b is reached, the “transition”
matrix is here P′(b) = (p′ij(b))ij with

p′ij(b) = (1 − δbi) aij/ki. (27)

The main problem in attaining node splitting invariance
is the stopping condition introduced by the term −δbi. If
the target node b is split into b′ + b′′, and if b′ is the new
target node, the walk must not continue after reaching b′′
since otherwise ABv would increase. Hence the walk must
sometimes stop earlier than before, at least when reaching
a twin of the target. As exact twins are usually rare in large
networks, it seems natural to adopt a somewhat more con-
tinuous stopping condition that may stop the walk with
some probability as soon as it enters the neighbourhood
of the target. Using a suitable n. s. i. similarity measure
σ∗(i, j) ∈ [0, 1] that equals zero for unlinked nodes and one
for twins, we can then define a n. s. i. Arenas-type random
walk betweenness:

AB∗
v = 〈AB∗

av(b)〉wab /wv (28)

with AB∗(b) = (AB∗
ij(b))ij =

∑∞
t=1 P′∗(b)t and “transi-

tion” matrix P′∗(b) = (p′∗ij(b))ij , where

p′∗ij(b) = (1 − σ∗(b, i))a+
ijwj/k∗

i . (29)

For the similarity measure we may, e.g., use one out of the
increasing sequence

σ∗
I (i, j) = δN+

i N+
j

,

σ∗
II(i, j) = a+

ijw
(N+

i ∩N+
j

)
/w

(N+
i ∪ N+

j

)
,

σ∗
III(i, j) = a+

ijw
(N+

i ∩N+
j

)
/ max

(
k∗

i , k∗
j

)
,

σ∗
IV (i, j) = a+

ijw
(N+

i ∩N+
j

)
2/

(
k∗

i + k∗
j

)
,

σ∗
V (i, j) = a+

ijw
(N+

i ∩N+
j

)
/
√

k∗
i k∗

j ,

σ∗
V I(i, j) = a+

ijw
(N+

i ∩N+
j

)
/ min

(
k∗

i , k∗
j

)
,

σ∗
VII(i, j) = a+

ij (30)

with w(M) =
∑

v∈M wv for M ⊆ N . In all these versions,
the walk may stop with some probability when a more
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or less twin-like neighbour of b is reached. If nodes can
be expected to “know” their neighbours with some prob-
ability, this stopping behaviour can also be interpreted as
meaning that once a neighbour of the target is reached,
the path to the target will more or less likely be known,
hence the target can be considered to be found and the
random search walk can stop.

In the brain example network, both the unweighted
and n. s. i. version (using σ∗

VII) of Arenas-type random
walk betweenness give the same set of nodes with top ten
betweenness values, but in quite different order: for ABv

it is LING.R, PCUN.L, CAL.L, PCUN.R, MFG.L,
MTG.R, DCG.L, DCG.R, SFGmed.L, and MFG.R, while
for AB∗

v it is PCUN.L, LING.R, MFG.L, CAL.L, MTG.R,
PCUN.R, SFGmed.L, DCG.L, MFG.R, and DCG.R.

In our world trade example network, when we use as
node weights the considerably varying countries’ gross do-
mestic product in 2008 (as reported by the IMF), then
according to ABv the countries with the largest between-
ness are CHN, USA, DEU, FRA, JPN, IND, RUS, ITA,
SGP, and KOR, whereas according to AB∗

v the ranking
is much different, USA, CHN, JPN, KOR, PAN, SAU,
MYS, PHL, VNM, and GAB, in descending order. The
last six are all connected to all three of the heavy-weight
nodes USA, CHN, and JPN (or FRA in case of GAB),
which explains their high AB∗

v -values. Also in the layout
in Figure 2, they are more centrally located than those
in the first list. Germany (DEU) and France (FRA) on
the other hand, are missing from the second list mainly
because they are connected to neither of those three big
economies directly. A much more realistic model of the
world trade network would of course use weighted and di-
rected links representing actual imports and exports, in
addition to node weights, so one cannot attach much real-
world importance to the above exemplary results.

In the preceding type of random walk betwenness, each
individual visit of the walk to v is counted. Newman [43]
introduced a similar measure in which, however, only the
“net” flow of the walk along each link is considered. A
more intuitive interpretation of his measure is the ex-
pected effective current Iab(v) passing through v when the
network is interpreted as an electric circuit with all links
having unit conductance, and a unit current is sent from
a random node a to a random node b. This explains the
definition of Newman’s random walk betweenness

NBv = 〈Iab(v)〉ab

with Iab(i) =
1
2

∑
j∈Ni

|Vj(a, b) − Vi(a, b)|, (31)

where the “electric potential” vector V (a, b) is given by
Kirchhoff’s equations

ΛV (a, b) = δ(a) − δ(b) with δi(c) = δic, (32)

where Λ = diag(k)−A is the Laplacian matrix of G which
will be studied more closely in Section 6.2. As with the
stopping condition above, here the main problem in find-
ing an n. s. i. version is that the current leaves the circuit at
a single node b, so that when b is split into b′ + b′′ and the

v

a
b

1 ampere 1 ampere

≤ 1 ampere

Fig. 12. Interpretation of n. s. i. Newman-type random
walk betweenness as the expected (electric) current flowing
through v when a unit current flows between the neighbour-
hoods of two randomly selected nodes a and b and each link’s
conductance is proportional to both its ends’ weights (here
represented by line thickness).

current leaves at b′, the twin b′′ will have a different elec-
tric potential than b′. This can be overcome in the same
way as above, by using some n. s. i. similarity measure σ∗
and letting a part of the current that is proportional to
wiσ

∗(b, i) leave the circuit also at each neighbour i of b.
A similar thing must also be done at the a-side where
the current enters. Finally, each link i-j must get conduc-
tance wiwj to reflect the fact that the link i-j represents
a bundle of links in G0 between the wi many points rep-
resented by i and the wj many points represented by j.
In order to avoid a dominating influence of the degree
on our measure, we also restrict a and b to nodes not di-
rectly linked to v, although this would not be necessary to
achieve node splitting invariance. For the choice σ∗ = σ∗

VII
in which the current enters and leaves at all nodes in the
neighbourhood of a and b to some extent, this approach
is depicted in Figure 12.

All these considerations lead to our definition of n. s. i.
Newman-type random walk betweenness

NB∗
v =

〈(
1 − a+

av

)
I∗ab(v)

(
1 − a+

vb

)〉w

ab

with I∗ab(i) =
1
2

∑
j∈N+

i
wj

∣
∣V ∗

j (a, b) − V ∗
i (a, b)

∣
∣, (33)

where V ∗(a, b) is given by the new equations

DwΛ∗V ∗(a, b) = δ′(a) − δ′(b),

δ′i(c) = wiσ
∗(i, c)/

∑
j∈N+

c
wjσ

∗(j, c), (34)

and where

Dw = diag(w) and Λ∗ = diag (k∗) − A+Dw (35)

are the diagonal matrix of aggregation weights and the
n. s. i. Laplacian matrix (see Sect. 6.2). In this way, after
a split s → s′ + s′′, all potentials V ∗

i (a, b) with i �= s
remain unchanged, and V ∗

s′ (a, b) and V ∗
s′′ (a, b) equal the

former V ∗
s (a, b). The measure NB∗

v estimates the expected
effective current passing through each unit-sized part of
the region Rv of G0 that is represented by v, when the
domain of interest G0 is interpreted as an electric circuit
with all links having unit conductance, and a unit current
is sent between two random neighbourhoods of G0.
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In the brain example network, this time the top
ten lists according to the unweighted and n. s. i. ver-
sions of Newman’s betweenness measure differ more
than for Arenas-type betweenness: we get TPOsup.R,
LING.L, LING.R, ORBinf.R, MFG.R, MFG.L, TPO-
mid.L, CAU.R, STG.L, and ITG.R according to NBv, but
TPOmid.L, TPOsup.R, TPOsup.L, LING.L, ORBinf.R,
TPOmid.R, CAU.R, THA.L, STG.L, and THA.R accord-
ing to NB∗

v . For example, MFG.L/R is again missing in
the second list while THA.L/R is included, and the ex-
planation is the same as for the case of shortest path be-
tweenness (Sect. 5.3).

Newman-type random walk betweenness is also of in-
terest in climate networks, see Section 7.

6 Global measures

6.1 Aggregate measures

Popular aggregate network statistics include the global
clustering coefficient C = 〈Cv〉v ∈ [0, 1] with n. s. i. ver-
sion

C∗ = 〈C∗
v 〉wv ∈ [0, 1], (36)

the global transitivity T = 〈aviaijajv〉vij/〈avi(1 −
δij)ajv〉vij which is closely related to C∗ and has the n. s. i.
version

T ∗ =

〈
a+

via
+
ija

+
jv

〉w

vij〈
a+

iva+
vj

〉w

vij

∈ [0, 1], (37)

the link density � = 〈aij〉ij ∈ [0, 1), whose n. s. i. version is

�∗ =
〈
a+

ij

〉w

ij
=

1
W

〈k∗
v〉wv ∈ [0, 1] (38)

the average (geodesic) path length or mean geodesic dis-
tance L = 〈dij〉ij � 0 with

L∗ =
〈
d∗ij

〉w

ij
> 0, (39)

and the global efficiency [40] E = 〈1/dij〉i�=j ∈ [0, 1] for
which we can use

E∗ =
〈
1/d∗ij

〉w

ij
∈ [0, 1]. (40)

Many authors, e.g., compare C and L to their values for
randomly rewired graphs to assess the “small-worldness”
of the network in a way that is quite sensitive to small
structural changes in the network (see [44]), and using C∗
and L∗ for this task should at least reduce that part of
this non-robustness that is related to node selection and
aggregation.

In our internet example network, we get C = 0.21,
i.e., for a randomly chosen AS v, two randomly chosen
other AS’s that are both linked to v are also linked with
each other with probability 21%. If the AS network is
constructed more meticulously than here, combining sev-
eral data sources, somewhat larger values around 0.4 are
found [45]. On the other hand, we have C∗ = 0.8, meaning
that for a randomly chosen IP address x, two randomly

chosen other IP addresses y, z that can be reached from x
in at most one routing step, can also reach each other in at
most one routing step with 80% probability. One reason
for the large difference between C and C∗ is the low aver-
age degree of only 〈kv〉v = 4.24, which means that many of
the above pairs y, z belong to the same AS and therefore
contribute to C∗ but not to C. Also, we get E ≈ 0.27 and
E∗ ≈ 0.336, which can be interpreted as indicating that
a typical distance between two randomly chosen AS’s is
1/0.27 ≈ 3.7 routing steps, while between two randomly
chosen IP adresses it is only 1/0.336 ≈ 2.98, which is 20%
less, showing that large AS’s tend to be more central than
small ones.

6.2 Characteristic matrices and spectral measures

Spectral network analysis deals with the eigenvalues and
eigenspaces of characteristic matrices such as the adja-
cency matrix A or the Laplacian and normal matrices

Λ = diag(k) − A, T = diag(k)−1A, (41)

of which we will only consider the first two here. Spec-
tral analysis can be used to study the centrality of nodes
and the community structure of the network, and to find
natural partitions or node classification trees.

Depending on which matrix properties are considered
essential, there are at least two different ways in which
these matrices can be made n. s. i. in some sense. One way
is to multiply both the rows and columns with the square
root of the corresponding node weights, similar to what
is done in a different context in the estimation of empir-
ical orthogonal functions from gridded data (e.g., [34]),
thereby preserving the symmetry of the matrix. For the
adjacency matrix, this gives

A∗′ = D1/2
w A+D1/2

w , (42)

which has the property that any solution to the eigenequa-
tion A∗′x = λx is n. s. i. in the sense that after a node
splitting s → s′ + s′′, the resulting new A∗′ still has the
eigenvalue λ with some new eigenvector y, the entries xv

of the eigenvector x that belong to non-split nodes v �= s
remain unchanged, yv = xv, and the quotient of eigenvec-
tor entry and square root of the weight is invariant also
for the split nodes, ys′/

√
ws′ = ys′′/

√
ws′′ = xs/

√
ws. In

particular, y has the same �2-norm as x. In a sense, the
splitting of node s results in a corresponding “splitting”
of all the eigenvectors’ s-dimension.

After the split, A∗′ has an (N + 1)st eigenvalue of
zero, corresponding to the eigenvector z with zs′ =

√
ws′′ ,

zs′′ = −√
ws′ , and zv = 0 for v �= s′, s′′. In particular,

the m-th moment 1
N

∑
i λm

i of A∗′ becomes n. s. i. if the
normalization 1/N is replaced by the n. s. i. normaliza-
tion 1/W : 1

W

∑
i λm

i . (As i does not refer to a node in this
sum, we do not need to weight λm

i with wi. The sum itself
is already n. s. i. since all non-zero λi are.)

An alternative and simpler possibility is to use the
node weights only for the columns and put

A∗ = A+Dw, (43)
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destroying symmetry and getting different eigenvectors y
as with A∗′, although the eigenvalues are the same. The
entries of the eigenvector x that belong to non-split nodes
i �= s still remain unchanged, but this time s′ and s′′ di-
rectly inherit their eigenvector entries from s, ys′ = ys′′ =
xs, so the new eigenvector y has the same �∞-norm as x.

As both A∗ and A∗′ are non-negative, the Perron-
Frobenius theorem guarantees the existence of a non-
negative eigenvalue of largest absolute value and corre-
sponding non-negative real eigenvectors x∗ and x∗′. Both
can therefore be used to get the n. s. i. version of an-
other popular centrality measure: the (adjacency) eigen-
vector centrality ECv of v is the entry xv of the (non-
negative) eigenvector x for A’s largest eigenvalue, where x
is usually normalized so that maxv xv = 1. The above
shows that we can define n. s. i. eigenvector centrality as
EC∗

v = x∗′
v = x∗

v/
√

wv. A similar measure based on the
normal matrix T is closely related to a major web search
engine’s page rank measure.

In the brain example network, the top ten cen-
tral nodes according to ECv are PCUN.L, LING.R,
CAL.L, PCUN.R, DCG.L, DCG.R, MTG.R, SFGmed.L,
CUN.L, and PCG.R, and according to EC∗

v they
are PCUN.L, MTG.R, MFG.L, SFGmed.L, PCUN.R,
DCG.L, LING.R, DCG.R, CAL.L, and MFG.R. Curi-
ously, this time the second rather than the first ranking
includes MFG.L/R which in this case is probably just be-
cause they have a much larger weight than CUN.L and
PCG.R (which are only in the first ranking).

For the Laplacian matrix Λ, also both constructions
are possible, leading to

Λ∗ = diag (k∗) − A∗ and Λ∗′ = diag (k∗) − A∗′. (44)

While the row sums of Λ∗ are zero just like for Λ, those of
Λ∗′ need not equal zero, but the latter matrix is symmetric.
Still, both matrices have the same eigenvalues, and those
and their eigenvectors behave in the same way under node
splitting as those of A∗ and A∗′, except that the additional
(N + 1)st eigenvalue is now k∗

s instead of zero.
The non-symmetric version Λ∗ can also be interpreted

as a Laplacian matrix of a directed network in which the
links instead of the nodes are weighted, with link weights
wij = wi. If the network is the result of the spectral
coarse graining procedure described in [46], Λ∗ equals the
Laplacian derived in [46], equation (3).

The spectral bisection method of Fiedler [47] uses the
signs of the eigenvector of the smallest positive eigenvalue
of Λ to find the most distinguishable two groups of nodes.
Using either Λ∗ or Λ∗′ in the same way will provide the
n. s. i. spectral bisection, both giving the same result since
only the sign of the eigenvector entries matters.

An enhanced version of spectral bisection uses eigen-
vectors of Newman’s [24] generalized modularity matrix to
iteratively find communities. Figure 2 shows three-group
solutions found by the unweighted and n. s. i. versions of
that algorithm, as described in Appendix B (online only),
in the world trade example network. The unweighted ver-
sion and the n. s. i. version using GDP as node weight plau-
sibly place Europe and North Africa in one group, most of

Fig. 13. (Colour online) N. s. i. version NB∗
v of Newman’s ran-

dom walk betweenness in a global climate network representing
correlations in surface air temperature dynamics (same net-
work as in Figure 4, Robinson projection). We can clearly iden-
tify the regions of the North Pacific Subpolar Gyre, the North
Atlantic Subtropical Gyre including the Gulf Stream and the
Canary Current, the North and South Equatorial Currents in
the Pacific, and the Antarctic Circumpolar Current. The inter-
pretation of other regions of high values like Scandinavia and
Central and North-East Africa remains unclear.

Asia in another, and the Americas in the third, with little
differences in the placement of some “bordering” coun-
tries. (The placement of UGD (bottom left) in the blue
group is an artifact of the algorithm due to its large dis-
tance from the network’s centre.) When using population
as node weight, the n. s. i. result however differs consid-
erably, placing China and India in different groups, since
the algorithm tends to produce groups of approximately
equal weight.

7 Application to climate networks

Coming back to our original field of application, let us
finally compare the unweighted and n. s. i. versions of a
number of network measures in the case of a climate net-
work whose node set is a latitude-longitude-regular grid on
the Earth’s surface, with a resolution of 2.5◦ in latitude
and 3.75◦ in longitude. As in Donges et al. [11,31,33], two
of these 6 816 nodes (the two poles have been excluded)
were linked when the corresponding time-series of monthly
averaged surface air temperature (SAT) anomalies from
the 20th century reference run 20c3m of the Hadley Cen-
tre’s HadCM3 model (as defined in the IPCC’s Fourth
Assessment Report, see [11,31] for details) showed a sig-
nificant Pearson correlation coefficient. We chose the link
inclusion threshold so as to achieve a relatively high link
density of approx. 0.05, for which all correlations of abso-
lute value of at least 0.25 were considered as significant.

As can be seen, e.g., from the resulting n. s. i. Newman-
type random walk betweenness (Fig. 13), this network re-
tains a number of interesting features of the global climate
system. As argued in [11], increased values of Newman’s
random walk betweenness may be indicative of diffusive
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transport processes in the climate system, e.g., turbu-
lent eddy diffusion in the atmosphere and ocean, whereas
shortest path betweenness is believed to trace advective
transport processes such as strong surface ocean currents.

For comparison, we defined a second, synthetic net-
work on the same set of nodes in which we linked each
pair of nodes i, j independently with a probability of
min(1, exp(0.4 − 0.09αij)), where αij is the angular dis-
tance between the nodes (in degrees). The exponential
relationship between link probabity and distance was fit-
ted to the relationship between the observed link density
and angular distance in the above climate network, us-
ing non-linear regression (a similar relationship was found
in [27]). The resulting benchmark network had a slightly
smaller link density of approx. 0.035 and can be inter-
preted as a sample from an underlying continuous network
whose link distribution depends on angular distance alone
and is therefore rotationally and translationally symmet-
ric. Because of this underlying symmetry, local network
measures suitable for the estimation of underlying fea-
tures should not show a significant depency on the node’s
latitude. The thin dashed and dotted lines in Figure 4
show the longitudinally averaged values of several network
measures, plotted against latitude, in this benchmark net-
work. We can see that the n. s. i. versions (dotted lines, us-
ing cos(latitude) as node weight) fulfil this requirement of
latitude independence much better than the unweighted
versions (thin dashed lines), which exhibit a clear system-
atical increase either towards the poles (degree, clustering
coefficient, and closeness centrality) or towards the equa-
tor (Newman-type random walk betweenness). For the de-
gree, this is due to the increase in absolute node density,
while for the clustering coefficient, this is due to the in-
crease of the density gradient towards the pole.

As can be expected from this, the corresponding val-
ues in the real-world climate network also show differ-
ences between the unweighted version (solid lines) and
the n. s. i. version (thick dashed lines) towards the poles
or towards the equator. Unweighted Newman-type ran-
dom walk betweenness, e.g., is higher in the region of the
North and South Equatorial Currents at about ±10◦ lati-
tude, while its n. s. i. version is higher in the region of the
North Atlantic Subtropical Gyre between +15◦ and +60◦
latitude, although both show well-defined features in both
regions.

The influence of the increased node density in the
high latitudes on unweighted network statistics becomes
even more evident when focussing on the Arctic region
north of +60◦ (Fig. 3). While the unweighted degree
and clustering coefficient are markedly increased close to
the North Pole, their geographic distribution is consid-
erably obscured by the node density induced bias fur-
ther southwards (Figs. 3A, 3B). In contrast, the n. s. i.
variants of degree and clustering coefficient reveal more
pronounced regional structures, e.g., increased n. s. i. de-
gree over southern Greenland and Scandinavia, or in-
creased n. s. i. clustering coefficient surrounding Greenland
(Figs. 3C, 3D). Hence, we judge n. s. i. network mea-
sures to be very promising tools for future analysis of

gridded climate data with inhomogeneous mesh cell ar-
eas or station data, particularly since the additional error
that would be introduced by interpolation to equal area
(geodesic) grids can thus be avoided.

8 Conclusion

To summarize, in this article we have introduced a fairly
general framework to deal with biases and artifacts in com-
plex network statistics that appear when the nodes rep-
resent differently sized parts of an underlying domain of
interest. Networks of this type are routinely studied in var-
ious fields of research, including neuroscience, the Earth
sciences, informatics and engineering, social sciences, eco-
nomics, and dynamical systems, as our examples show,
and network design choices made when describing the do-
main of interest by a complex network can have consider-
able effects on the results of network statistics.

The central axiomatic notion of node splitting (or twin
merging) invariance provides an elegant means to tackle
the problem of how to use information on the size of (the
part of the domain of interest represented by) individual
nodes in a way that is robust against different choices of
node selection, grid, meshing, parcellation, aggregation,
or coarse-graining. Our framework allowed us to derive
consistently weighted versions of a large representative
set of commonly used statistical network measures that
quantify different aspects of networks in which links rep-
resent some kind of similarity or closeness. Despite the
diversity of these n. s. i. measures, a simple set of design
rules (given in Sect. 4.3) guided the introduction of node
weights into their definitions. The resulting formulas are in
most cases computationally no more demanding than the
original ones, and slightly modified versions of standard
algorithms with the same complexity can usually be used
to apply them in practice. Also, since the construction of
all our measures is based on the same first principles, they
work better together and allow for an easier interpretation
than alternative ad hoc approaches might.

Most importantly, n. s. i. measures reflect the features
of the domain of interest more accurately than classical
unweighted measures. This was demonstrated in partic-
ular in the case of a synthetic and a real-world climate
network, for which it was possible to compare the re-
sults of n. s. i. measures on a non-homogeneous grid with
those based on a homogeneous (geodesic) grid, both show-
ing exactly the same features and avoiding the artifacts
that were produced by unweighted measures on the non-
homogeneous grid. We have further illustrated the appli-
cability and practical relevance of our axiomatic approach
by qualitatively showing their effects in a number of semi-
realistic example networks. In particular, we showed how
in many of these examples, the judgement of which parts
of the network are the most central or otherwise struc-
turally important can change when node weights are used.

Our results also indicate that the topological proper-
ties of network representations of technical infrastructure
such as the internet depend on whether the sometimes
considerably varying size of the individual subsystems
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chosen as nodes in the network representation is taken
into account or not, and we conjecture that n. s. i. mea-
sures will prove highly relevant and beneficial for the con-
sistent analysis of the vulnerability of distributed technical
systems. When analyzing how the connectivity of the in-
ternet decreases due to targeted attacks [48], the size of
both the attacked and the affected autonomous systems
should be of obvious interest. A more thorough study of
the AS network used for illustration here is of course be-
yond the scope of this methodological paper. It would have
to construct the links much more carefully by taking ad-
ditional data sources into account, as described in [14],
and verify that the number of CIDR prefixes is indeed
a suitable size measure for autonomous systems. We also
leave for future research the general question of how one
should choose node weights suitable for a given network
and research question.
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Appendix A: Measures corrected for a typical
weight

Since we introduced n. s. i. measures f∗ as weighted ver-
sions of existing network measures f , it is natural to con-
sider the case where all node weights wv are equal to some
constant value ω. Usually, because of the construction
mechanisms (i) and (ii) given in Section 4.3, f∗ will not ex-
actly equal f in that case but rather be some (usually sim-
ple) transformation of it, and only for N → ∞, f∗ is often
asymptotic to f , e.g., k∗

v = (kv +1)ω = ωkv + |o(kv)| ∼ kv.
When one wants to compare values of f∗ with those of f ,
this behaviour presents some difficulties, hence we will
present here for most of the treated measures a second,
somewhat more complex, corrected n. s. i. version of f∗,
denoted by f∗ω, which is also n. s. i., but which involves a
parameter ω > 0 and has the property that

f∗ω = f whenever wv = ω for all v ∈ N , (A.1)

so that f∗ω can be compared to f more easily than f∗.
The parameter ω is then called the typical weight and can
be thought of as a kind of resolution or scale on which
the analysis focuses. The question of how a suitable value
for ω can be estimated from G and w if the weights are
not all equal is addressed later, in the next subsection.

In many cases, the following construction mechanisms
are helpful in addition to (i)–(iv) given in Section 4.3 to
derive f∗ω from f∗:

(v) Correct for the effect of (i) by replacing each occur-
rence of wi by wi/ω, and

(vi) correct for the effects of (ii) and (iii) by subtract-
ing suitable terms (often constants) from sums over
nodes.

It will be convenient to express the corrections in terms
of the corrected version of W , which can be called the
corrected n. s. i. number of nodes,

N∗ω = W/ω. (A.2)

In the example of degree, we apply both (v) and (vi) and
put

k∗ω
v =

∑
i∈N+

v
wi/ω − 1 = k∗

v/ω − 1 (A.3)

which obviously reduces to kv if wv ≡ ω. In case of non-
constant weights, it can happen that k∗ω

v turns out to be
negative for some v if ω is chosen too large. The same effect
can happen for corrected n. s. i. versions of other measures,
as will be obvious from their definitions presented below.
In general, negative values can be avoided by lowering ω
or by replacing them by zero.

For the local clustering coefficient, we have

C∗
v (wi ≡ ω) =

Cvkv (kv − 1) + 3kv + 1
(kv + 1)2

= Cv+
∣∣
∣
∣O

(
1
kv

)∣∣
∣
∣.

A corrected n. s. i. local clustering coefficient can only be
defined for the case that k∗ω

v > 1,

C∗ω
v =

(N∗ω)2
〈
a+

via
+
ija

+
jv

〉w

ij
− 3k∗ω

v − 1

k∗ω
v (k∗ω

v − 1)
� 1, (A.4)

where, following (vi), we subtract (3k∗ω
v + 1) since in

〈a+
via

+
ija

+
jv〉wij , the nodes i and j can be equal or equal to v.

For ω � wv/2, one can prove that C∗ω
v � 0.

Also corrected n. s. i. closeness centrality measures can
be derived via (v) and (vi):

CC∗ω
v =

1
1/CC∗

v − 1/N∗ω
� 1,

CC′∗ω
v = CC′∗

v − 1/2N∗ω � 1,

CC′′∗ω
v = CC′′∗

v − 1/N∗ω � 1. (A.5)

In case of (shortest path) betweenness centrality BC∗
v =

〈n∗
ab(v)/n∗

ab〉wab, we only have to divide n∗
ab and n∗

ab(v) by
a suitable power of ω, according to (v). Subtractions as in
(vi) are unnecessary since we did not extend any sums to
derive BC∗

v from BCv. Hence the corrected n. s. i. versions
are

n∗ω
ab = ω1−dabn∗

ab, n∗ω
ab (v) = ω2−dabn∗

ab(v),

BC∗ω
v = 〈n∗ω

ab (v)/n∗ω
ab 〉wab = ωBC∗

v ∈ [0, ω/wv] . (A.6)
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For random walk-based measures, a corrected n. s. i. ver-
sion of the transition probabilities pij is only obvious in
the pathological case in which ω � minv wv and when no
isolated nodes exist. We could then put

p∗ω
ij = a+

ij (wj/ω − δij) /k∗ω
i . (A.7)

For larger, more realistic choices of typical weight, this def-
inition of p∗ω

ii would result in negative values for many i
and could thus not be interpreted as a transition proba-
bility. We will therefore not present corrected versions of
random-walk based measures.

The aggregate statistics we presented also allow for cor-
rected n. s. i. versions: for the global clustering coefficient
it is

C∗ω = 〈C∗ω
v 〉wv , (A.8)

while for transitivity it is

T ∗ω =
(N∗ω)3 〈aviaijajv〉vij − N∗ω (3 〈k∗ω

v 〉wv + 1)

(N∗ω)3 〈aivavj〉vij − N∗ω (3 〈k∗ω
v 〉wv + 1)

� 1.

(A.9)
For the link density, average (geodesic) path length, and
global efficiency, it is just

�∗ω = �∗− 1
N∗ω

, L∗ω = L∗− 1
N∗ω

, E∗ω = E∗− 1
N∗ω

.

(A.10)

For spectral analysis, the corrected n. s. i. versions of ad-
jacency A and Laplacian Λ are

A∗ω =
1
ω

A∗ − I, Λ∗ω = diag (k∗ω) − A∗ω =
1
ω

Λ∗,

A∗′ω =
1
ω

A∗′ − I, Λ∗′ω = diag (k∗ω) − A∗′ω =
1
ω

Λ∗′.

(A.11)

In particular, EC∗
v (wi ≡ ω) = ECv, hence n. s. i. eigen-

vector centrality needs no correction, and also unweighted
and n. s. i. spectral bisections are identical if wi ≡ ω.

A.1 Estimation of typical weight

The usefulness of our corrected versions of the n. s. i. mea-
sures depends on a suitable choice of the typical weight ω.
In applications in which the underlying domain of inter-
est does not provide a natural choice for ω, we can try to
determine a suitable ω from the network itself. Such an
“estimate” ω̃ of ω should ideally (i) depend monotonically
on the node weights wv, (ii) lie in [minv wv, maxv wv], (iii)
be n. s. i. itself, and (iv) be small enough so that mea-
sures such as k∗ω

v and C∗ω
v are defined and non-negative

for all or at least almost all nodes. In addition, it would
be nice if (v) ω̃ is statistically robust, i.e., cannot change
unboundedly by only local changes to the network.

To fulfil (i), (ii), and (v), the most natural choice seems
to be the median node weight. With a small adjustment,

also (iii) is satisfied: define the n. s. i. twin-adjusted weight
of v as

w′∗
v =

∑
i∈N+

v
wiδN+

i N+
v
∈ [wv, k∗

v] (A.12)

and let ω̃I be the w-weighted median of w′∗
v . This ful-

fils (i)–(iii) and (v), though not necessarily (iv). Only
when there are pathologically many twins, ω̃I might ex-
ceed maxv wv.

A different approach is to address (iv) first by putting

w′′∗
v =

3
4
k∗

v −
√

9
16

k∗
v
2 − 1

2
Δ∗

v ∈
(

0,
1
2
k∗

v

]
. (A.13)

Using ω = minv w′′∗
v would then ensure that for all v,

k∗ω
v � 1 and both C∗ω

v and C′∗ω
v are defined and non-

negative except maybe for those few v where the above
minimum is attained. When v is not isolated, w′′∗

v �
minv wv, but it may easily exceed maxv wv. Hence a good
choice that fulfils (i)–(iv), though not (v), is

ω̃II = min (ω̃I , minv w′′∗
v ) . (A.14)

Finally, a trade-off between (iv) and (v) can be made by
using in this definition not minv w′′∗

v but a small quan-
tile, say the first percentile Pw

1 (w′′∗
v ), of the w-weighted

distribution of w′′∗
v :

ω̃III = min (ω̃I , P
w
1 (w′′∗

v )) . (A.15)

Appendix B: Some additional measures

The average (nearest) neighbours’ degree of v,

knn,v =
∑

i∈Nv
ki/kv, (B.1)

represents the average size of the region a point linked
to v is linked to. Using the plug-in mechanism (iv) and the
correction mechanism (v) and (vi), we define its weighted
versions, the n. s. i. average (nearest) neighbours’ degree
and the corrected n. s. i. average (nearest) neighbours’ de-
gree, as

k∗
nn,v =

∑
i∈N+

v
wik

∗
i /k∗

v,

k∗ω
nn,v =

∑
i∈N+

v
wik

∗ω
i /ωk∗ω

v − 1.

These are n. s. i. since their ingredients k∗
i , k∗

v , k∗ω
i , and k∗ω

v

are. In case of constant weights wi ≡ ω, we have k∗ω
nn,v =

knn,v, whereas the uncorrected version is then

k∗
nn,v (wi ≡ ω) =

knn,vkv + 2kv + 1
kv + 1

ω

= (knn,v + 2)ω + O
(

1
kv

)
.

The Pearson product-moment correlation coefficient be-
tween the degrees of the two end nodes of each link in G
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is called degree correlation or assortativity and can be com-
puted from the degrees and average neighbours’ degrees
as follows:

r =

〈
k2

vknn,v

〉
v
〈kv〉v − (〈

k2
v

〉
v

)2

〈k3
v〉v 〈kv〉v − (〈k2

v〉v)2
. (B.2)

A [corrected] n. s. i. degree correlation is most easily found
using the plug-in mechanism (iv):

r∗ =

〈
k∗

v
2k∗

nn,v

〉w

v
〈k∗

v〉wv −
(〈

k∗
v
2
〉w

v

)2

〈
k∗

v
3
〉w

v
〈k∗

v〉wv −
(〈

k∗
v
2
〉w

v

)2 ,

r∗ω =

〈
k∗ω

v
2k∗ω

nn,v

〉w

v
〈k∗ω

v 〉wv −
(〈

k∗ω
v

2
〉w

v

)2

〈
k∗ω

v
3
〉w

v
〈k∗ω

v 〉wv −
(〈

k∗ω
v

2
〉w

v

)2 .

Note that r∗ is the common Pearson correlation coefficient
between k∗

i and k∗
j in the probabilistic model in which

the link or self-loop i-j is drawn with relative probabil-
ity wiwj . The latter measures the number of links in G0

between the regions represented by i and j, hence r∗ es-
timates the correlation coefficient between the degrees of
the two end points of all links in G0.

Soffer and Vázquez [50] justify a version of the clus-
tering coefficient Cv which is partially adjusted for degree
correlations:

C′
v =

N2 〈aviaijajv〉ij∑
i∈Nv

(min (ki, kv) − 1)
∈ [Cv, 1] . (B.3)

Again using all four mechanisms (i)–(iv), we get their
n. s. i. versions:

C′∗
v =

W 2
〈
a+

via
+
ija

+
jv

〉w

ij∑
i∈N+

v
wi min (k∗

i , k∗
v)

∈ [C∗
v , 1] and

C′∗ω
v =

(N∗ω)2
〈
a+

via
+
ija

+
jv

〉w

ij
− 3k∗ω

v − 1
∑

i∈N+
v

wi

ω min (k∗ω
i , k∗ω

v ) − 2k∗ω
v

∈ [C∗ω
v , 1] ,

where we define the latter only for the case where∑
i∈N+

v

wi

ω min(k∗ω
i , k∗ω

v ) > 2k∗ω
v .

Bonacich [51] defined a measure of v’s power central-
ity based on the idea that a node’s “power” in a network
should be the sum of a linear function of each of its neigh-
bours’ powers:

PCv =
∑

i∈N avi (α + βPCi) (B.4)

for some parameters α, β > 0. This implicit definition is
solved by the power centrality vector

PC = (PCi)i∈N = α (I − βA)−1
k, (B.5)

where k = (ki)i∈N is the degree vector, assuming that
I−βA is invertible (which will be true for a general choice
of β). To find the n. s. i. version, we make the defining

equation n. s. i. and require that v’s power is the weighted
sum of the linear function of its neighbours’ powers:

PC∗
v =

∑
i∈N a+

viwi (α + βPC∗
i ). (B.6)

Whenever I − βA+Dw is invertible, the solution

PC∗ = α (I − βA∗)−1
k∗ (B.7)

is then the sought n. s. i. power centrality vector, where k∗
is the n. s. i. degree vector, k∗ = (k∗

i )i∈N .
Following (v) and (vi) again, the corrected n. s. i. equa-

tion is

PC∗ω
v =

∑
i∈N a+

vi
wi

ω (α + βPC∗ω
i ) − (α + βPC∗ω

v ) ,
(B.8)

and its solution is the corrected n. s. i. power centrality
vector

PC∗ω = α (I − βA∗ω)−1
k∗ω. (B.9)

The random walk centrality of v as defined by Noh and
Rieger [52] measures how fast a walk starting at a random
node reaches v:

RWCv = pv

/∑∞
t=0 ((P t)vv − pv) . (B.10)

The obvious n. s. i. version of this is

RWC∗
v = p∗v

/ ∑∞
t=0

((
(P ∗)t

)

vv
− p∗v

)
.

The normal matrix T = diag(k)−1A is also often used
as the basis of a centrality measure and has the n. s. i.
versions

T∗ = diag (k∗)−1
A∗, T∗ω = diag (k∗ω)−1

A∗ω (B.11)

which both retain T’s property of having row sums equal
to one.

B.1 Modularity

Following Newman [24], the modularity of a partition P
of N expresses how well the groups defined by P are
internally connected and separated from each other. It
is defined as the observed within-group link density mi-
nus its expected value given the observed degree distri-
bution:

Q =

〈
δP(i)P(j)Bij

〉
ij

〈aij〉ij
with Bij = aij − kikj

N 〈kv〉v
,

(B.12)
where P(i) is that set in P which contains i. The (cor-
rected) n. s. i. versions of these are:

Q∗ =

〈
δP(i)P(j)B

+
ij

〉w

ij〈
a+

ij

〉w

ij

,

B+
ij = a+

ij −
k∗

i k∗
j

W 〈k∗
v〉wv

,
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Q∗ω =

〈
δP(i)P(j)B

+ω
ij

〉w

ij
− 1/N∗ω

〈
a+

ij

〉w

ij
−1/N∗ω

,

B+ω
ij = a+

ij−
k∗ω

i k∗ω
j

N∗ω 〈k∗ω
v 〉wv

.

Q∗ estimates the within-group link density in G0 minus
its expected value given the degree distribution in G0, for
the partition of N0 induced by the partition P of N .

Similar to the matrices A, Λ, and T, also the spectrum
of the modularity matrix B = (Bij)ij can be made n. s. i.,
using the matrices B+ = (B+

ij)ij and B+ω = (B+ω
ij )ij :

B∗ = D1/2
w B+D1/2

w , B∗ω =
1
ω

D
1/2
w B+ωD

1/2
w − I.

Given a subset g ⊆ N of the nodes, the generalized mod-
ularity matrix is the |g| × |g| matrix B(g) = (B(g)

ij )ij with

B
(g)
ij = Bij − δij

∑
v∈g Biv. (B.13)

Newman [24] uses the signs in the eigenvector of its largest
positive eigenvalue in an efficient iterative network di-
viding algorithm similar to Fiedler’s spectral bisection
method, in which a hierarchical clustering tree is con-
structed top-down by starting with g0 = N , bisecting into
two groups g1, g2 according to the eigenvector signs, and
then repeating with each gi thus obtained. The following
versions of B(g) can be used to derive similar n. s. i. net-
work divisions, as exemplified in Figure 2:

B
(g)∗
ij = B∗

ij − δij

∑
v∈g wvB+

iv,

B
(g)∗ω
ij = B∗ω

ij − δij

∑
v∈g

(wv

ω
B+ω

iv − δiv

)
.

If we assume that when splitting s → s′ + s′′ with s ∈ g,
both s′ and s′′ are put into the new g, then the eigenvec-
tors of these matrices have the same n. s. i. properties as
those of B∗ above. In particular, the eigenvector entries
for s′ and s′′ have the same sign as that of s, whereas all
other signs are unchanged, hence the division of g will be
the same after the split except that s is replaced by s′
and s′′ in its subgroup.
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