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Abstract. Complex networks provide an invaluable framework for the study of interlinked dynamical systems.
In many cases, such networks are constructed from observed time series by first estimating the interdependencies
between pairs of datasets. However, most of the classic and state-of-the-art interdependence estimation techniques
require sufficiently long time series for their successful application. In this study, we present a modification of the
inner composition alignment approach (IOTA), correspondingly termed mIOTA, and review its advantages. Using
two coupled auto-regressive stochastic processes, we demonstrate the discriminating power of mIOTA and show
that it outperforms standard interdependence measures. We then use mIOTA to derive econo-climatic networks of
interdependencies between economic indicators and climatic variability for Sub-Saharan Africa (AFR) and South
Asia including India (SAS). Our analysis uncovers that crop production in AFR is strongly interdependent with
the regional rainfall. While the gross domestic product (GDP) as an economic indicator in AFR is independent of
climatic factors, we find that precipitation in the SAS influences the regional GDP, likely reflecting the influence
of the summer monsoons. The differences in the interdependence structures between AFR and SAS reflect an
underlying structural difference in their overall economies, as well as their agricultural sectors.
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1. Introduction

The theory of complex networks is a powerful tool that
helps us to understand the interplay between local inter-
actions and global features of dynamical systems [1].
The structure of the network which encodes all physi-
cally meaningful and relevant interactions is however,
not clearly defined in all cases. In many situations,
such as when studying interactions in the brain [2], cli-
mate [3], economic indicators [4], trade networks [5]
or ecological populations [6], we are required to infer
the structure of the network from a set of observed
time series that encode the time evolution of the var-
ious system components. In such cases, the structure
of the network, viz. the edges between the network
nodes (represented here by the dynamical systems cor-
responding to each of the observed time series) are
identified by first estimating all pairwise interdepen-
dencies and then ruling out those estimates that could

have occurred by random chance. The remaining set of
interdependence estimates represents the edges of a
complex network that encodes the non-random (assum-
ably physically meaningful) interactions of the system
under study.

Given the wide range of complexity of real-world
systems, and the increasing number of datasets, sev-
eral new approaches have been proposed over the
last two decades that seek to extend our scope of
inferring meaningful interdependencies from observed
time series. The interdependence estimation approaches
themselves stem from a broad spectrum of theoreti-
cal concepts such as information theory [7–9], sym-
bolic dynamics [10, 11], recurrence plots [12–14], and
Granger causality [15–17]. Notwithstanding the avail-
ability of such theoretically rigorous approaches, a com-
mon hindrance in the application of these techniques is
that the interdependence estimation procedure is often
unreliable for ‘short’ time series. This is particularly
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relevant because, despite the increasing availability of
data and the growing need of big data approaches, sev-
eral real-world applications face limited data availabil-
ity, such as very short time series or only few obser-
vations. Typical examples include paleoclimate proxy
data [12], socio-economic measurements [18], gene reg-
ulatory networks in systems biology [19] or life threat-
ening events such as epileptic seizures or ventricular
tachycardia [20,21]. To the best of our knowledge, only
a few approaches can cope with this challenge, such
as recurrence-plot-based methods, and more recently,
approaches such as that of Ernst et al. [22], Hempel
et al. [23] and Ma et al. [24] that have been specifically
designed to infer the interdependence between a pair of
short time series.

The focus of this study is to provide an extension of
the inner composition alignment (or IOTA) approach
put forth by Hempel et al. [23] to infer interdependen-
cies for short time series. In the following sections, we
first review the ideas behind the IOTA approach and
present its limitations, which motivate the extension pre-
sented in this study. Next, we outline the new approach,
henceforth called modified inner composition alignment
(mIOTA), and present its performance with respect to
time series length, coupling strength, and noise. We
also review its performance as a discriminating detector
of interdependence for short time series in comparison
to existing methods. Lastly, we apply our method to
global socio-economic and climatic data sets, and ask
the question: What is the structure of interdependencies
between economic indicators and climatic variability?
The purpose of the example is not to construct a complex
network (as, for instance, in [25]) but to demonstrate
how interdependencies can, in principle, be estimated
from short time series to construct networks, opening
up future research possibilities dealing with complex
networks derived from short datasets.

We emphasise that the notion of what is a sufficiently
‘long’ (or ‘short’) time series depends crucially on the
variability of the time series themselves: the higher the
variability or stochasticity, the longer the time series
required for a robust estimation of interdependence.
That being said, for the rest of this study, we refer to time
series with length≤ 50 time points as ‘short’ time series.

2. Modified inner composition alignment (mIOTA)

2.1 Background and definition

Hempel et al. [23, 26] put forward an approach based
on inner composition alignment (IOTA in short, denoted
by the Greek letter �), in order to infer the interdepen-
dence between a pair of short time series. According to

the authors, IOTA could be applied to very short time
series up to only ten data points. Moreover, since the
measure is asymmetric, it can be further used to infer
the direction of the estimated interdependence as well.

The fundamental idea underlying IOTA is: Given
there are two observables X and Y . In order to deter-
mine if X drives Y , we first estimate the permutation of
X which rearranges the values of X in increasing order,
and then apply the same permutation to the measure-
ments of Y . If X drives Y , the values of Y will also be
rearranged in an increasing order (see figure 1). If Y is
independent of X , then the values of Y will be reordered
in a random manner. The extent to which Y is reordered
in monotonic increasing order is determined by the num-
ber of crossings that the reordered Y series has with
itself. The lower the number of self-crossings, the more
monotonic it is, and consequently, the more likely it is
that it is driven by X .

Mathematically, let xt and yt , t = 1, 2, 3,… ,N be
the observed time series of X and Y respectively (fig-
ure 1a), and �X(⋅) be the permutation that arranges the
entries xt in increasing order. Let y�X

t = �X(yt) be the
permuted version of the time series yt (figure 1b). Then
the measure IOTA, �, is given by

�(X→Y ) = 1−

∑N−2
i=1

∑N−1
j=i+1!ij Θ

[

(y�X

j+1 − y�X

i )(y
�X

i − y�X

j )
]

M
,

(1)

where!ij is an appropriate weight for each possible self-
crossing, Θ(⋅) denotes the Heaviside step function such
that it is 1 for all positive inputs and zero otherwise, and
M = N(N − 1)∕2 is the total number of possible self-
crossings used here to normalise the observed number
of self-crossings so that � lies in the interval [0, 1].

Even though, in principle, the normalisation M is
applied to ensure that � is in [0, 1], in practice, � values
towards 0 are far rarer than expected. This is because
of all the possible N(N − 1)∕2 self-crossings, some are
more unlikely than others. Theoretically, it is possible
to partially overcome this problem by an appropriate
choice of weighting!ij, but in practice, it is hard to gauge
how the weighting impacts the quality of estimation of
interdependencies. This problem is highlighted with the
surrogate distribution required to determine whether an
estimated � value has occurred purely by random chance
(figure 1c). In most cases, we find that the distribution of
� values of completely uncorrelated pairs of time series
are not centred around 0.5 as expected, but are rather
biased towards 1, indicating that the value M is larger
than is necessary. A serious consequence of this is that
the approach stands to lose its discerning power between
random and meaningful � values as the surrogate dis-
tribution tends towards 1 and the interval of possibly
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Figure 1. Inferring interdependencies with IOTA, �. (a). Two
sample Gaussian white noise time series X and Y of length 10
time points such that X drives Y . (b) The permuted versions
�X (Y ) (of Y ) and �X (X) (of X) highlight that �X (Y ) results in
an almost monotonic reordering of Y as it is strongly driven
by X. The reordering is not perfect as the two time series are
not perfectly coupled. Horizontal dashed lines in (b) highlight
the self-crossings of the reordered series y�X

t . (c) The surro-
gate distribution of � values obtained by randomly shuffling
yt 10000 times and calculating �X→Y for each randomisation.
The observed �X→Y

obs
is indicated. The random surrogate distri-

bution is not centred around 0.5, as would be expected from
random time series, but is rather shifted towards the value
of 1.

meaningful � values gets smaller. Hempel et al. [26]
recommends that the selection criterion for the detec-
tion of a statistically significant interdependence is that
it should be greater than the expected value of the sur-
rogate distribution. This however, only ensures that the
observed � is greater than what is expected by random
chance – a much weaker null hypothesis than when
trying to ensure that the observed value of a test statis-
tic is less than 5% likely to have happened by random
chance.

An additional drawback of the IOTA approach is that
it fails to differentiate between positively correlated and
negatively correlated interdependencies as all � values
are, by definition positive, and it is not clear what is
the � value of a pair of uncorrelated time series which
would have ideally been the midpoint between perfectly
correlated and perfectly anticorrelated � values. In many
situations, it is important to know not only that X is
interrelated to Y , but also whether an increase in X leads
to an increase in Y or not.

We propose to modify IOTA by counting the mag-
nitude of increasing/decreasing pairwise distances in
the permuted series y�X

t instead of the number of self-
crossings. Using the same notation as in eq. (1), we
denote the modified IOTA (mIOTA) value � as

�(X,Y ) =

∑N−1
i=1

∑N
j=i+1(y

�X

j − y�X

i ) ⋅ |(y
�X

j − y�X
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i )2
, (2)

where | ⋅ | denotes the absolute value. The underly-
ing idea here is that the higher the interdependence
between X and Y , the more monotonic is y�X

t , and
hence, the higher the magnitude of positive pairwise
distances as we proceed along the reordered series y�X

t .
The measured � lies in the interval [−1, 1]. For a pair
of uncorrelated time series, the sign of the increments
(y�X

j − y�X

i ) in eq. (2) will most likely be at random and
thus the summands would approximately cancel each
other out, resulting in a value close to zero. This is in
contrast to adding up as would be assumed for correlated
time series where y�X

t is more monotonic. A positive
value close to 1 indicates strong positive correlation,
while a negative value close to −1 points to negative
correlation.

Figure 2 schematically illustrates how � helps to dif-
ferentiate between positively and negatively correlated
interdependencies for short time series. The random sur-
rogate distribution for �X,⋅ is centred around 0, unlike
that of �X→⋅, which helps to determine how unlikely it is
to observe an extreme (positive or negative) value of �
by pure random chance. This advantage however comes
with the trade-off that, unlike �, the newly proposed mea-
sure � is symmetric with respect to an interchange of X
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Figure 2. Inferring interdependencies with mIOTA, �. (a).
Three sample Gaussian white noise time series X, Y and
Z are taken such that X drives Y in a positively correlated
manner and X drives Z in a negatively correlated manner.
(b) The permuted versions �X (Y ) (of Y ), �X (Z) (of Z), and
�X (X) (of X). �X reorders Y (Z) in increasing (decreasing)
order, reflecting the underlying positive (negative) correla-
tions between X and Y (X and Z). (c) Surrogate distribu-
tions of �X ,Y (�X ,Z ) values obtained by randomly shuffling
yt (zt) 10,000 times and calculating �X,Y (�X ,Z ) for each
randomisation. The observed �X,Y

obs
(�X ,Z

obs
) is indicated. The

random surrogate distributions are centred around 0, unlike in
figure 1c, and the positive (negative) correlations between X
and Y (X and Z) are well-differentiated from one another.

and Y (figure not shown) and thus cannot be used to
infer the direction of the interdependence. The direc-
tion of the interdependence is different from the sign
(positive or negative) of the correlation. The direction
of interdependence is determined by whether X drives Y
or vice versa, whereas the sign of correlation indicates
whether an increase in the driver leads to an increase
or decrease in the response. Although � can in princi-
ple indicate whether X drives Y or not, it cannot tell
us anything about the sign of the correlation. However,
� can differentiate whether X and Y are positively or
negatively correlated, but it cannot tell us which one is
the driven system and which one is the driver. Neverthe-
less,� still offers a robust detection of interdependencies
for short time series and performs better than exist-
ing methods. The details are discussed in the following
subsections.

2.2 Predicting interdependencies between short,
coupled AR(1) processes

To test the robustness of the proposed measure, we
consider a system of coupled first-order auto-regressive
processes without drift, henceforth referred to as AR(1)
processes. The AR(1) processes chosen here is intended
as a generic example to illustrate the performance of
the proposed measure �, as well as to help compare its
performance with existing standard measures of quan-
tifying interdependence. The proposed variant of the
IOTA approach is at its core a statistical method to
quantify predominantly linear interdependencies and
hence can be applied to many model systems as well
as to real-world datasets. The final conclusions are typ-
ically made based on a statistical significance test (out-
lined below) which helps identify those pairs of time
series which show interdependence estimates outside
reasonably chosen bounds corresponding to random
chance.

The two AR(1) processes X and Y are generated such
that X drives Y with a chosen coupling strength C,

xt =
3
4

xt−1 + �"X
t (3)

yt =
3
4

yt−1 + �"Y
t + Cxt , (4)

where "(⋅)t is a standard normal random variable with
mean zero and variance one, and � represents the mag-
nitude of noise in the modelled AR(1) processes. For the
sake of computational simplicity, we set the noise mag-
nitudes and the AR(1) coefficient to the same values for
both X and Y , with the understanding that the qualitative
nature of our final conclusions is not impacted severely
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by choosing different values for these parameters. The
AR(1) time series described here are different from the
Gaussian white noise time series used to schematically
demonstrate the ideas underlying � and � in section 2.1.

The mIOTA approach is tested over changes in
the time series length, coupling strength, and noise
magnitude as follows:

1. For a given combination of time series length, cou-
pling strength, and noise magnitude, we generate
100,000 realisations of X and Y (such that Y is
driven by X).

2. For each of the above 100,000 (X , Y ) combina-
tions, we calculate the sample mIOTA, denoted
here as �X,Y

obs .
3. A surrogate distribution corresponding to the null

hypothesis that the observed mIOTA values could
have occurred by chance is constructed from 1000
random permutations of time series selected at ran-
dom from the large set of Y time series. This is done
by a randomisation of the timings of the observed
Y time series. Thus, each surrogate time series
is a random permutation of the corresponding
observed time series of Y .

4. A two-sided p-value is obtained for each of the
above 100,000 �X,Y

obs values based on the surrogate
distribution.

5. Using a range of values of the false positive rate
(FPR, which equals the significance level of the
hypothesis test), we obtain a prediction result
for each of the 100,000 values of �X,Y

obs , which
allows us to calculate the true positive rate (TPR)
corresponding to each FPR.

6. The relation between TPR and FPR, also known as
the receiver operating characteristic (ROC) curve
is then used to estimate the area under the curve
(AUC). The AUC attempts to quantify the pre-
dictive powers of the statistical test which tells
us whether or not X drives Y . Ideally, we would
like to have TPR values close to 1, irrespective
of the value of FPR, which would lead to AUC
≈ 1. A completely random prediction of whether
X drives Y or not would, in theory, result in a
TPR value approximately equal to the chosen FPR
value, yielding an AUC ≈ 0.5. We refer the read-
ers to the discussions on ROC curves presented in
Refs [27, 28].

7. We thus estimate an AUC value for each given
combination of time series length, coupling
strength, and noise magnitude.

AUC values near to or below 0.5 indicate bad discrim-
inating power of the test, whereas AUC values close to
one indicate a high discriminating power of the test. Our

results indicate that the mIOTA approach fares quite well
for time series length of over 20 time points (figure 3).
The efficacy of the measure is impacted by all three fac-
tors, but the length of the time series has a prominent
effect.

2.3 Comparison of mIOTA (�) with other measures

We repeat the AUC estimation as outlined in section 2.2
for the original IOTA �, the proposed mIOTA �, the clas-
sic Pearson’s cross-correlation coefficient [29,30] (Pear-
son’s �), Spearman’s rank-correlation coefficient [31]
(Spearman’s �), and Kendall’s � coefficient [32]. For all

Figure 3. Predicting interdependencies for short, coupled
AR(1) processes with mIOTA, �. Using an ensemble of
10,000 coupled AR(1) processes X and Y according to eq. (3),
we calculate �X ,Y

obs
. The predictive performance is quantified

via the AUC of a receiver operating characteristic, which we
determined using time series surrogate distributions. This pro-
cedure is repeated for all combinations of the time series
length and (a) coupling strength C or (b) noise magnitude
�. Details on the numerical approach are given in section 2.2.
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the considered measures we estimate the p-value with
the help of randomised surrogates (as detailed in the
earlier section). The results (shown in figure 4) indicate
that the mIOTA approach fares better in most of the
combinations of time series length, coupling strength,
and noise magnitude, where (as per figure 3) the AUC
of � is close to 1. We find that, for short time series,
and for low coupling strengths, Pearson’s � turns out to
be the best measure for most combinations. This is in
contrast to the widely held perception that Person’s �
is unsuitable for short time series. Kendall’s � is also
seen to perform well in a significant number of combi-
nations, although without any discernible relation to the

Figure 4. Comparison of mIOTA with other approaches.
For comparing mIOTA � with IOTA �, Pearson’s �, Spear-
man’s� and Kendall’s � coefficient, we ranked them according
to their predictive performance measured by the respective
AUC. Here, we depict the correlation measure with highest
AUC for all combinations of the time series’ length and (a)
coupling strength C or (b) noise magnitude �. The numerical
approach for each measure is analogous to the one yielding
figure 3; details are given in section 2.3.

parameter combination – an interesting insight consid-
ering the widely held perception that it is most suited
for inferring interdependencies in short time series. We
note however, that even though we have considered a
large ensemble size, the seemingly random scatter of
the wins for Kendall’s � might be due to sample size
effects. It also becomes clear from figure 4 that the ear-
lier definition of IOTA does not fare well in most of the
parameter combinations chosen in the analysis.

Note that in figure 4a, barring the random scatter for
the wins by Kendall’s �, mIOTA is the best of the cho-
sen set of measures for time series with length over
30 time points. Combining this insight with the AUC
values for time series length ≥ 30 from figure 3, we
conclude that mIOTA is a good choice for estimating
interdependencies for short time series with 30–50 time
points.

3. Interdependencies between economic indicators
and climatic variability

3.1 Data

We use historic economic and climatic data that are
input data for the framework of the global land use
allocation model MAgPIE (Model of Agricultural Pro-
duction and its Impact on the Environment) [33] which
is linked to the land-use model LPJmL [34]. The data
has been aggregated to 10 world regions which were
clustered based on similar socio-economic, cultural and
climatic conditions as well as geographical proxim-
ity and comparable size. We base our analysis on the
economic world regions in MAgPIE as a compromise
between the very detailed grid level of climate observ-
ables – sharing common properties within a climate
zone – and socio-economic indicators, where informa-
tion is aggregated only on a national level. The MAgPIE
regions are characterised not only on the basis of eco-
nomic indicators but also the climate. Hence, we assume
that interdependencies in the data aggregated to a
regional level are also valid for a majority of constituting
subregions.

Here, we present the results of interdependence esti-
mations using mIOTA � on two of the ten MAg-
PIE regions: (i) Sub-Saharan African (AFR), and (ii)
South Asia including India (SAS). The economic and
demographic indicators that we extract from the MAg-
PIE database include: (i) crop production (tons), (ii)
crop demand, (iii) livestock production, (iv) livestock
demand, (v) population numbers (1000 heads), and (vi)
gross domestic product (GDP) (US$). These datasets are
resolved annually for a period of 46 years (1961–2007),
and are available on a per-country basis. For the purpose
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of our analysis, we further aggregate the time series so
that we have one time series for each of the above indi-
cators for each of AFR and SAS. The aggregation is
done by summing the total value for each of the above
indicators within each respective MAgPIE region.

In addition to the economic indicators listed above, we
consider climatic indicators: the annual mean tempera-
ture (◦C) and the annual sum of precipitation (mm/yr)
on a grid level given ca. 60.000 cells (0.5◦lon × 0.5◦lat).
We extract the climatic variables for the AFR and SAS
regions from the globally gridded dataset, and further
aggregate them to obtain (as with the economic time
series) one time series each for temperature and pre-
cipitation for each of AFR and SAS. The aggregation
is done by taking the average annual temperature and
the total precipitation sum for each of the two MAgPIE
regions considered.

3.2 Estimation of �

We first remove the influence of long-term trends by con-
sidering only the rate time series, i.e., the time series of
changes per year in all of the datasets considered (both
economic and climatic). Next, since the data include
disparate variables with different units, we normalise
them using a quantile-based normalisation so that the
transformed time series approximately follow a stan-
dard normal distribution. That is, for a given time series
xt , we obtain the transformed time series x∗t as

x∗t = Φ
−1

(

1 −
q(xt)
100

)

, (5)

where Φ−1(⋅) denotes the inverse of the cumulative dis-
tribution function of a standard normal distribution, and
q(⋅) is the quantile function that returns the quantile of
each given value of xt . This transformation does not
change the relative ordering of the measurements in a
time series, which is crucial for the estimation of �.

We thus have, for each of AFR and SAS, the following
time series:

1. Normalised rates of total regional crop production
ΔCP∗t .

2. Normalised rates of total regional crop demand
ΔCD∗

t .
3. Normalised rates of total regional livestock pro-

duction ΔLP∗t .
4. Normalised rates of total regional livestock

demand ΔLD∗
t .

5. Normalised rates of total regional gross domestic
product ΔGDP∗t .

Similarly, for the climatic variables, we have for each of
AFR and SAS, the following two datasets:

1. Normalised rates of average regional temperature
ΔT∗t .

2. Normalised rates of total regional precipitation
ΔP∗t .

These normalised datasets are visualised for AFR in
figure 5 (upper panel) and for SAS in figure 6 (upper
panel). For each of these two regions, we thus have
7 datasets leading to a possible number of 21 interde-
pendence links between them. We estimate � for each
of these 21 combinations. Next, for each combination,
we randomise the data 10,000 times, and estimate �
for each random pair, allowing us to construct a surro-
gate distribution corresponding to the null hypothesis:
The considered pair of time series is not interdepen-
dent. The surrogate distribution is used to determine
whether the observed value of � between the actual time

Figure 5. Climate-economic interdependencies in Sub-
Saharan Africa (AFR). (upper panel) Schematic representa-
tion of the normalised rate time series. The time series are sep-
arated along the ordinate for visual guidance. (lower panel)
Statistical interdependence network for AFR. The node colour
and label correspond to the time series in the upper panel. The
link width is proportional to the value of mIOTA �, while the
link colour is solid orange for positive values of � and dashed
blue otherwise [35].
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Figure 6. Climate-economic interdependencies in South
Asia (SAS). (upper panel): Schematic representation of the
normalised rate time series. The time series are separated
along the ordinate for visual guidance. (lower panel) Statis-
tical interdependence network for SAS. The node colour and
label correspond to the time series in the upper panel. The
link width is proportional to the value of mIOTA �, while the
link colour is solid orange for positive values of � and dashed
blue otherwise [36].

series (not randomised) is statistically significant with
respect to the null hypothesis at a confidence level of 5%
(which is also the FPR of the test). The combinations
which result in significantly lower or higher values of �
(based on a two-tailed test) are visualised as a weighted
interdependence edge between the corresponding eco-
nomic/climatic observables in figure 5 (lower panel) for
AFR and in figure 6 (lower panel) for SAS.

3.3 Econoclimatic networks

Our analysis reveals that crop production in the AFR
region is significantly interlinked only to the total
regional precipitation (�ΔP,ΔCP

AFR = 0.55). In the con-

text of growing concern of projected crop yield changes
under changing climatic conditions in Africa [37], this
result indicates that out of regional temperature and
regional precipitation, changes in the latter holds more
influence over future crop yields. It is interesting to note
further that the regional crop production could not be
linked significantly to the regional crop demand, a pos-
sible reason for which could be that international trade
balances out production-side fluctuations. Contrarily,
we also find that the AFR livestock production is signif-
icantly interdependent to its demand (�ΔLD,ΔLP

AFR = 0.7).
We further find that the GDP in AFR is not significantly
linked to either crop production or livestock production,
indicating additional economic factors that contribute to
the GDP.

The analysis further indicates a significant negative
interdependence between the two climatic variables
– regional mean temperature and the total regional
precipitation – with �ΔT ,ΔP

AFR = −0.49.
In the SAS region, we find that, out of the two climatic

variables, only precipitation is linked to the economic
indicators. Precipitation in this region is positively cor-
related to crop production and GDP. This is likely due
to the strong influence of the Asian Summer Monsoon
(ASM) on the region’s agriculture and also on the fact
that agricultural production forms a significant part of
the economic turnover of the countries in this region. In
contrast to the situation in AFR, the GDP in SAS is inter-
dependent on crop production and livestock production,
besides precipitation. This difference might be indica-
tive of an underlying structural difference in the overall
economies between the AFR and the SAS countries.

Regional crop production in SAS is further linked to
its regional demand, which highlights a further dissim-
ilarity with AFR, where crop production was seen to be
decoupled from its demand. As with the overall econ-
omy, this would indicate that the agricultural economies
in these two regions are also structurally different: SAS
seems to be less connected to international agricul-
tural markets than AFR. This indicates, however, that
consumers in SAS might be more exposed to climatic
variations as they make less use of the buffer capacity
of international markets.

Interestingly, we find that neither livestock production
nor its demand in the SAS is linked to either crop produc-
tion or crop demand. This is contrary to the perception
that livestock has a crucial impact on the agricultural
economy of India (one of the major countries of the
region). The absence of links between datasets, however,
does not necessarily imply that there are no interde-
pendencies between the two. Rather, our results reflect
that given the datasets, and the best performing inter-
dependence measure �, our analysis could not reject
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the null hypothesis that there was no interdependence
between these combinations of time series. The reasons
might be that the livestock sector is too small compared
to plant-based food consumption to have a significant
effect or that ruminant production is still mainly grass-
and scavenging-based and therefore has little interaction
with the cropping sector.

The link between precipitation and GDP in SAS may
also be an example of a spurious link, likely caused here
by an indirect correlation of precipitation on the GDP
via crop production. This is not to suggest that precipi-
tation does not influence GDP, but rather that precipita-
tion might not influence GDP directly. The problem of
spurious links is a general problem faced by all interde-
pendence estimates, and is caused by either an indirect
influence or a by a common driver. Measures such as
partial cross-correlation, conditional mutual informa-
tion, and more recently, an approach based on transfer
entropy [38], and another that uses a recurrence-based
measure of conditional dependence [14] seek to over-
come this problem by ruling out indirect and common
driver influences. The mIOTA approach itself needs to
be further extended to be able to rule out spurious links
in short time series.

In summary, our results highlight those pairs of econo-
climatic variables which are quite likely to be interde-
pendent on each other. The results aim to supplement,
and they themselves need to be supplemented by, a
thorough understanding of the underlying mechanisms
which moderate these interrelations.

4. Conclusion

We have presented an extension of the IOTA approach to
detect interdependencies for short time series. The pro-
posed modification of IOTA, or mIOTA, overcomes the
drawbacks that IOTA is unable to distinguish between
positive and negative correlations, and that the null
distribution for IOTA is biased towards higher values.
The improvements in mIOTA come with the trade-off
that, unlike IOTA, it is unable to uncover the direc-
tion of interdependencies. With a simple example of
a pair of coupled AR(1) processes, by varying the
coupling strength, time series length, and the mag-
nitude of noise, we have demonstrated that mIOTA
outperforms not only the earlier version of IOTA, but
also standard interdependence measures such as Pear-
son’s cross-correlation coefficient, Spearman’s rank-
correlation coefficient, and Kendall’s tau. We further
stress that, although the proposed mIOTA approach
does not quantify causal relations (unlike IOTA, or
Granger causality), based on the comparative results
presented here, we find that mIOTA does well to indicate

interrelations, especially for short time series. This is at
the cost of not being able to indicate the causal relation
of an interdependence.

For sufficiently long time series, a sliding window
analysis of mIOTA values can be carried out to estimate
dynamically changing interactions between two observ-
ables. Calculating mIOTA for each window results in a
time series of mIOTA values which encapsulates the
time evolution of the interdependence between the two
observables. Again, appropriate statistical tests can be
designed to test whether the obtained mIOTA values
could have been obtained by random chance. Notably, a
sliding window analysis with mIOTA can be performed
on smaller windows (i.e. shorter time series) than with
competing measures, leading to a finer resolution of
interdependence changes.

We used mIOTA to construct econoclimatic networks
between climatic observables (mean regional temper-
ature and total regional precipitation) and economic
indicators (crop production, crop demand, livestock pro-
duction, livestock demand, and GDP) for Sub-Saharan
Africa and South Asia including India. Our analysis
reveals that climate (viz. precipitation) plays an impor-
tant role in crop and livestock production in the AFR
region but does not influence its GDP. Precipitation in
the SAS, however, is found to influence the regional
GDP, most likely reflective of the influence of the Asian
summer monsoon. Differences in the interdependence
structures between the two regions hint at underlying
structural difference in their economies.

Our study places the construction of networks from
short time series on a robust footing, and opens up future
research possibilities that might aim to derive complex
networks from short datasets. We also note that mIOTA
has the potential to be further improved so that it can
possibly rule out spurious interrelations induced either
by a common driver or by an indirect interdependence.
This remains the subject of ongoing and future work
for us.
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