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ABSTRACT

The oceans and atmosphere interact via amultiplicity of feedbackmechanisms, shaping to a large extent the global climate and its variability. To
deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary
research.However, our present understanding of the underlying large-scale processes is greatly limited due to themanifold interactions between
essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network
techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal
scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate
network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between
atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain
undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant
spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST
andP at annual scale (8–16months) concentratemainly over the PacificOcean, while the corresponding spatial patterns progressively disappear
when moving toward longer time-scales.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5095565

The study of the climate system using complex networks pro-
vides new insights into spatiotemporal climate dynamics. Most
previous studies have focused on a single climate variable only.
Accounting for the multivariate and multiscale nature of climate
variability introduces a new challenging perspective that could
help improve our understanding of the underlying physicalmech-
anisms. In this study, we focus on the aforementioned two aspects
of multiple variables and time-scales contributing to the variabil-
ity of the climate system and show that cross-variable statistical
relations evolve differently at different time-scales. Considera-
tion of this previously widely disregarded factor provides a more
explicit picture of scale-dependent covariability patterns among

climate variables and their temporal evolution, which might be
overlooked when focusing only at the native resolution of existing
climate data sets.

I. INTRODUCTION

The mutual interdependence between ocean and atmospheric
variability, which is mediated via various different processes, is a
key ingredient in global climate dynamics across a vast range of
spatial and temporal scales.1–3 In particular, in the tropics and sub-
tropics coupling between both systems via wind stress, differential
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heating and evaporation gives rise to important phenomena such as
monsoons or the El Niño–Southern Oscillation (ENSO).4 Thereby,
understanding the interactions between ocean and atmosphere in
space and time across scales is of fundamental socioeconomic rel-
evance, including fields like agriculture or risk assessment in the
context of the insurance sector. The latter relates mainly to the tim-
ing and magnitude of climate extremes like heatwaves, floodings,
or droughts, which play a vital role for daily life and prosperity of
the society yet are hard to assess due to their strong spatiotemporal
heterogeneity.

In this work, we focus on the interdependence between sea-
surface temperature (SST) and precipitation (P) as two key variables
associated with ocean and atmosphere, respectively. There is a large
body of existing studies on the interrelation between these two vari-
ables and the possible causes and associated impacts of correspond-
ing extremes. In this context, one key physical mechanism is the
exchange of surface fluxes.5,6 Recent studies suggest that P tends to
increase in some approximately linear fashion with increasing SST
over the tropical monsoon basins, suggesting a noticeable impact
of SST on tropical precipitation.7 By contrast, in the western North
Pacific region, the correlation between local rainfall and SST in the
boreal summer is negative, indicating that atmospheric dynamics
dominates over oceanic preconditioning in determining the rainfall
variability of this region.8,9 This observation may be explained by the
monsoon activity during this season. The summer monsoon brings
rainfall, but also leads to SST cooling and, hence, the negative corre-
lation between local rainfall and SST. Trenberth and Shea8 studied the
covariability between surface temperature and P globally and found
negative correlations over land but positive correlations over high
latitudes. They also concluded that ocean conditions drive the atmo-
sphere. In vast parts of the tropics, higher surface air temperatures
are associated with more evaporation and, therefore, precipitation,
which can be well observed in the core ENSO region in the eastern-
to-central tropical Pacific. In turn, other regions, like the western
Pacific during boreal summer, feature negative correlations between
SST and P, indicating that atmospheric dynamics mainly determines
the surface temperatures of the ocean.8

To this end, many recent studies suffer from the fact that they
account for variations at multiple time-scales at most in terms of
considering seasonal composites. However, this largely neglects the
variety of time-scales (from subseasonal to decadal) at which ocean
and atmosphere interact via an exchange of energy and matter (in
our case, water). In turn, recent developments in the field of non-
linear time series analysis like empirical mode decomposition and
functional climate networks have already proven their versatile appli-
cability in studying multivariable climate dynamics at different time-
scales.10–12 Here, we follow up on corresponding recent ideas by
combining time series decomposition for SST and P into contribu-
tions at different time scales with complex network approaches.

Specifically, in order to disentangle the multiscale interdepen-
dence between SST and P globally, we first employ the discrete
wavelet transform (DWT), which provides a method to process data
at different time-scales.13–17 This technique allows decomposing the
local variability of SST and P individually into contributions with dif-
ferent characteristic time-scales. In order to unveil the corresponding
scale-specific spatial interdependence patterns, we employ the con-
cept of functional network analysis,18–21 the development of which

has beenmotivated by numerous examples of successful applications
of complex network approaches across scientific disciplines and to
problems of great societal relevance.22 Here, each grid point of a given
climate data set corresponds to a node of a spatially embedded net-
work, and links represent strong statistical associations between the
variability observed at the respective grid points.

Previous applications of functional network analysis to climate
science have mainly focused on individual climatological fields rep-
resenting the dynamics of a single variable or atmospheric layer.
Recently, a multivariate extension of this framework has been intro-
duced in terms of interdependent or coupled climate networks, which
allows studying the spatiotemporal interdependence patterns among
two ormore variables from a complex network perspective.23–25 How-
ever, a detailed analysis of themultiscale spatial characteristics of two
interdependent climate variables has not yet been performed. In turn,
given the multiplicity of known (almost periodic to broad-banded
irregular) oscillatory variability modes in different atmospheric and
ocean variables from intraseasonal [e.g., the Madden-Julian Oscilla-
tion (MJO)] over interannual [e.g., North Atlantic Oscillation (NAO)
and ENSO] to multidecadal scales [e.g., Pacific Decadal Oscillation
(PDO) or Atlantic Multidecadal Oscillation (AMO)], it is pivotal
to explicitly account for the associated distinct scales in order to
attribute the resulting spatial interdependence patterns to specific cli-
mate mechanisms. This is precisely what we attempt in the present
study.

The remainder of this paper is organized as follows: Sec. II
describes the utilized datasets and methods. The results are pre-
sented and discussed in Sec. III. Specifically, we will focus on two key
local characteristics of spatially embedded coupled networks—the
cross-degree and average cross-link distance—between sea-surface
temperatures and precipitation. Bothmeasures are presented asmaps
as well as zonal and meridional averages. The main results of our
study are summarized in Sec. IV.

II. DATA AND METHODS

A. Description of the data

Weuse globalmonthly SST and precipitation data for the period
of 1979–2015 provided by theUSNational Oceanic andAtmospheric
Administration—Earth System Research Laboratory’s Physical Sci-
ences Division (NOAA/OAR/ESRL PSD), which are freely avail-
able at https://www.esrl.noaa.gov/psd/. Specifically, we employ the
ERSST v3b gridded SST dataset with a spatial resolution of !λ = !
φ = 2◦, and the GPCP version 2.3 global precipitation dataset with a
resolution of !λ = !φ = 2.5◦.

Since our goal is to capture long-term climate variability,
monthly averages are generally preferred, because the high-
frequency variability of daily data products might blur relevant vari-
ability at longer time-scales. As a preprocessing step, we first remove
all grid points of SST and P with missing values or gaps, resulting in
9456 (SST) and 10 368 (P) grid points, respectively. In a second step,
we calculate the resulting anomaly series for each grid point by sub-
tracting the climatological mean for each month of the year from the
respective time series. Note that while the SST data set by definition
only covers the oceans (without those parts that have been captured
by sea-ice during at least one month of the study period), the P data
have global coverage including both oceans and continents.
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B. Analysis strategy

In order to justify an appropriate analysis strategy, an initial
inspection of the properties of the studied time series is useful. Both
SST and P fields have been used in a vast body of climatological
studies, and their basic features are therefore well understood. As
one important aspect, the empirical frequency distributions of values
for each grid point could negatively affect the outcomes of stan-
dard time series analysis techniques. In the present case, however, we
emphasize that while dealing with a native monthly (instead of daily)
resolution of our data sets, some of the most critical concerns are
circumvented. On the one hand, deviations from a Gaussian distri-
bution are often interpreted as signatures of nonlinear dynamics.26–30

However, in the case of monthly SST values, non-Gaussianity plays
a relatively minor role as compared to atmospheric variables. On the
other hand, precipitation at daily scales is known to suffer from the
fact that the distribution presents a combination of an occurrence
and an intensity process, which implies many zero values, so that the
use of correlation-based analysis methods can lead to severe prob-
lems that require sophisticated concepts to cope with.31 However, at
monthly scales, except for desert or semidesert regions as well as
their oceanic counterparts, the relative fraction of zeros is greatly
reduced in comparison with daily data so that the distributional
features become markedly less problematic at this coarser tempo-
ral resolution. Taken together, both methodological ingredients of
this work—wavelet decomposition and correlation analysis—can be
considered relatively weakly affected by the distributional features of
the time series under study.

The following two subsections briefly explain the details of the
two main ingredients of our analysis framework, wavelet decompo-
sition and functional climate network analysis. Figure 1 presents a
schematic view of this approach. Initially, we decompose themonthly
SST and P data into their respective contributions at different time-
scales (up to decadal scales) using the maximum overlap discrete
wavelet transform (see below). Then, we compute the pairwise lag-
zero correlation coefficients between the resulting scale-specific vari-
ations of each SST grid cell and all considered P grid cells. We
repeat this procedure at each time-scale of interest. It is important
to highlight that we are mainly interested in the effects of SST on pre-
cipitation, i.e., how the SST variability at different scales influences P
at different time-scales around the globe. Thus, we do not study here
possible effects of P on SST, which we have found to be generally less
spatially coherent (not shown). Finally, by defining a global thresh-
old to all cross-correlations between the SST and P fields at each
time-scale, we obtain binary adjacency matrices that represent the
connectivity structure of a coupled climate network based on which
the corresponding network topology can be conveniently studied in
terms of selected characteristics.

C. Maximum overlap discrete wavelet transform

We use the Maximum Overlap Discrete Wavelet Transform
(MODWT), which is a modification of the classical Discrete Wavelet
Transform (DWT).32–34 MODWT decomposes a time series into dif-
ferent time-scales or frequency bands. The wavelet decomposition

FIG. 1. Schematic illustration of the construction of a functional network from global gridded climate data sets (see text for details). The shown time series excerpts are for
illustrative purposes only and do not reflect any of the specific data sets used in the present work.
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is realized using two basis functions known as father wavelet and
mother wavelet, respectively (see below). Any function f (t) can be
expressed through these basis functions and their scaled and trans-
lated versions as

f (t) =
∑

k

sJ,kφJ,k(t) +
∑

k

dJ,k$J,k(t)

+
∑

k

dJ−1,k$J−1,k(t) + · · · +
∑

k

d1,k$1,k(t), (1)

where J is the total number of scales to be analyzed and k is in the
range of 1 to T (the length of the time series). The coefficients sJ,k
are called approximation coefficients and dJ,k, . . . , d1,k wavelet trans-
form coefficients at scales from J to 1, while the functions φJ,k(t)
and

{

$j,k|j = 1, . . . , J − 1, J
}

are the approximating wavelet function
and detail wavelet functions, respectively. These basis functions are
defined in terms of father and mother wavelets as follows:

φj,k(t) = 2−
j
2 φ(2−jt − k), (2)

$j,k(t) = 2−
j
2 $(2−jt − k). (3)

Further, the values of the wavelet transform coefficients at each
scale and the approximation coefficients at scale J are estimated by

dj,k ≈

∫

$j,k(t)f (t)dt, j = 1, . . . , J (4)

and

sJ,k ≈

∫

φJ,k(t)f (t)dt, (5)

respectively, where the scaling coefficients sJ,k capture the smooth
trend of the time series at the coarsest scale 2J (which is why they are
also called smooth coefficients), and the wavelet coefficients dj,k, also
known as detail coefficients, describe fluctuations from the coarsest
scale to the finest scale. The original series f (t) can be reconstructed
by summing up the detail components and the smooth components
as

f (t) = SJ,k + DJ,k + DJ−1,k + · · · + D1,k, (6)

where SJ,k =
∑

k sJ,kφJ,k(t), DJ,k =
∑

k dJ,k$J,k(t), and D1,k =
∑

k d1,k
$1,k(t). Examples for the resulting decompositions can be vastly
found across the literature on geoscientific time series analysis. For
two examples of rainfall time series quite similar to those studied in
the present work (though with daily resolution), we refer to Fig. 2 of
Ref. 35 or Fig. S1 in the supplementary material of Ref. 36.

In this work, we employ the so-called Haar wavelet, a sim-
ple piecewise constant function, as a mother and father wavelet.
Although its very basic form may be less advantageous for more
sophisticated analyses, it considerably simplifies its numerical
handling.35 Notably, Haar wavelets have recently attracted great inter-
est in the context of fluctuation analysis of climate variability.37

D. Coupled climate networks

Let us denote the SST and P anomaly fields as
{

Xi(t)
}Ni

i=1
and

{

Xj(t)
}Nj

j=1
, respectively, with t = 1, . . . ,T indicating time steps with

monthly mean values and i and j the specific grid points on the Earth

from which the respective series have been taken. By applying the
MODWT, we first decompose each SST and P time series at each
grid point into seven distinct time series, each representing a spe-
cific time-scale (i.e., 1–2, 2–4, 4–8, 8–16, 16–32, 32–64, and 64–128
months).

For any of these scales, each time series is considered as a node
in a climate network, which is identified with the spatial position of
the corresponding grid point. Links between node i in the SST field
and node j in the P field exist if some similaritymeasure SMij between
the corresponding time series exceeds a given threshold τ . Thus, the
resulting climate network representation is given by the adjacency
matrix

Aij = &
(

|SMij| − τ
)

, (7)

where&(·) denotes the Heaviside step function. As a similarity mea-
sure, we employ the classical Pearson correlation coefficient (PCC)
at lag zero as one of the simplest possible statistical association
measures. The restriction to this linear characteristic does not con-
tradict the fact that the climate system exhibits a great variety of
nonlinear relationships among its components. However, previous
works have often shown that the most characteristic network pat-
terns are already well visible in the case of the linear PCC and, thus,
do not require the more computationally demanding estimation of
nonlinear counterparts like mutual information.38

Besides the choice of the similarity measure, the selection of
the threshold value τ to distinguish between linked and nonlinked
node pairs has to be justified. Some recent studies have systematically
addressed the effect of varying values of τ (respectively, the corre-
sponding edge density) on the resulting network measures. While
the spatial patterns of node-wise characteristics as exclusively used
in this work (see below) commonly show little qualitative variation
as the threshold is altered,21 there are a few exceptions of global char-
acteristics that can bemore strongly affected38 but are not used in this
work. Therefore, we do not provide here a thorough investigation of
the particular effects of threshold variations in the present context
while referring to those previous findings.

To keep only the strongest statistical relationships, we consider τ
as the empirical 99% quantile value of all pairwise correlation values
at a given MODWT scale. This choice is motivated by recent studies,
where it was found that the 99% quantile is adequate for represent-
ing atmospheric teleconnections.38–40 In turn, we do not explicitly
account for the increasing autocorrelation of the individual records
at coarser time-scales (e.g., by replacing the mutual correlations by
associated p-values involving necessary corrections for serial depen-
dency), which originates from the fact that with increasing scale
of the MODWT, the signals are gradually smoothed. However, this
effect applies to all grid points in a similar way. In what follows, we
will exclusively study the statistical linkages between the SST and P
fields, while ignoring those between different grid points of the same
field (as also considered in previous works23,25), making the resulting
network representations bipartite graphswhere links exist exclusively
between nodes (grid points) of different types (variables).

One important point in studying climate networks based on
data given on a regular latitude–longitude grid (also called angularly
regular grids, as used in this study) is that bymoving toward the poles,
the spatial density of nodes systematically increases. This can result
in some significant bias in the topological characteristics of climate
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FIG. 2. N.s.i. cross-degree of SST → P for (a) the original anomaly time series and (b)–(h) the seven scales obtained by MODWT (1–2, 2–4, 4–8, 8–16, 16–32, 32–64, and
64–128 months), respectively.
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networks, since mutually closer nodes are commonly more strongly
correlated and, thus, are on average more densely connected in the
network. This problem can be accounted for by using specific node-
weighted versions of the networkmeasures of interest, so-called node
splitting invariant (n.s.i.) measures.41 Here, each node is weighted by
the area on the Earth’s surface it represents so that nodes closer to
the poles get gradually lower weights. It can be shown that a proper
node weight for angularly regular grids is given by19

wq = cos λq, (8)

where λq is the latitude associated with grid point/node q.
Having thus obtained the network’s adjacencymatrix and intro-

duced proper node weights, we can now estimate different network
measures. In this study,we restrict our attention to two characteristics
that will be further described in the following. For quantifying local
cross-variable interactions, we use the n.s.i. cross-degree,23,24 which
will be complemented by the n.s.i. cross-average link distance which
measures the mean spatial distance between any pair of mutually
connected (i.e., strongly correlated) SST and P grid points.

1. N.s.i. cross-degree

The n.s.i. cross-degree is defined as

ki =
∑

j∈VP

wjAij for i ∈ VS, (9)

where VS and VP denote the sets of nodes of the two subnetworks
(here, SST and P) andwj is theweight of node j as defined in Eq. (8). ki
gives the spatial area represented by those nodes j ∈ VP that are con-
nected with a given i ∈ VS. The opposite direction (i.e., cross-degrees
of nodes in the P field into the SST field) can be simply deduced by
exchanging the two node sets above, but will not be further discussed
in this work.

By studying the n.s.i. cross-degree, we identify which areas of
the SST field are strongly correlated with P variations. Those regions
in the SST field that exhibit high values of the n.s.i. cross-degree can
be interpreted as having particularly strong influence on P anomalies
around the globe.

2. N.s.i. cross-average link distance

The second measure of interest in this study is the n.s.i. cross-
average link distance

ALDi =

∑

j∈VP
DijAij

ki
for i ∈ VS, (10)

where Dij is the geodesic distance at the Earth’s surface between two
nodes i ∈ VS and j ∈ VP that are connected within the two climato-
logical fields. This measure quantifies whether a specific SST node
interacts more locally with the nodes of the P field or whether there
are long-distance interactions between them.

III. RESULTS AND DISCUSSION

A. Cross-degree at integrated time-scales

Figure 2 shows the spatial pattern of cross-degrees in the SST
field with respect to global gridded precipitation data as the link tar-
gets. At the original monthly resolution of the data [Fig. 2(a)], it
is evident that there are three main SST regions that are character-
ized by very strong effects on the precipitation field. Two of these
regions are located in the equatorial Pacific (eastern-to-central and
western tropical Pacific, respectively), while a third one is found in
the southern Pacific Ocean.

Regarding the pattern formed by the two tropical regions, it is
noticable that these closely resemble the known anomaly patterns of
SST and sea-level pressure associated with ENSO. In this context, it
should be highlighted that ENSO controls the time-dependent mag-
nitude and spatial extent of the atmospheric Walker circulation over
the Pacific, which is responsible for the zonal wind fields transport-
ing moist air from areas with large evaporation (i.e., warm SSTs) to
others that are characterized by condensation of water vapor fol-
lowed by cloud formation and, finally, precipitation. The two areas
with high cross-degree coincide with the main region that is directly
affected by ENSO, but (especially on longer time scales) also partially
by the PDO as a strong mode of Pacific ocean-atmosphere coupled
variability at decadal time-scales.

Notably, the spatial centers of action of ENSO and PDO are
known to partially overlap. Specifically, while the PDO has its prime
center in the Northern Pacific region, it also exhibits considerable
covariability patterns in the equatorial Pacific. This is distinctively
different from ENSO, which primarily affects climate in the low lat-
itudes, but has less clear linear covariability patterns in the North
Pacific,42 although the existence of corresponding teleconnections
has been studied in various papers, e.g., Ref. 43. Taken together, due
to their spatial overlap, it is reasonable to consider ENSO and PDO
as two mutually interdependent phenomena, which are, however,
relatively well separated in terms of their characteristic time scales
(with ENSO varying considerably faster than the PDO). The corre-
sponding interactions across space and time are likely mediated via
different processes including the so-called Pacific Meridional Mode
(PMM).44,45 In turn, disentangling spatiotemporal SST patterns solely
attributable to any of these modes has been proven a challenging task
that is a subject of ongoing work.46 Regarding the results presented
in Fig. 2(a), we tentatively conclude that when investigating climate
variability at the original (monthly) resolution without separating
the effects of different time-scales, the spatial signatures associated
with the impacts of ENSO and PDO on global precipitation overlap
spatially in the tropical and subtropical Pacific and can thus hardly
be distinguished from each other based on the cross-degree pattern
alone.

The third SST region with high n.s.i. cross-degree is located in
the southern Pacific and appears closely related with the so-called
Southern Annular Mode (SAM). Specifically, the spatial position of
the identified region coincides well with the Amundsen Sea Low
(ASL), a quasistationary atmospheric low pressure system over the
Amundsen-Bellingshausen-Ross Sea. Previous works have already
demonstrated that the ASL is often intensified or weakened in the
presence of different ENSO phases.47 However, the signatures of
different time-scales in the ENSO-ASL teleconnection have hardly
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been studied explicitly in previous works, which is why we shall pro-
ceed next with considering the cross-degree fields from SST to P at
the different frequency bands provided by our MODWT-based time
series decomposition.

B. Scale-specific cross-degree patterns

At time-scales of 1–2 months [Fig. 2(b)], the most prominent
cross-degree patterns are found in a region comprising the northern
Indian Ocean, maritime continent, and westernmost tropical Pacific,
implying that SST anomalies in that region have the strongest impacts
on global precipitation variability. Both time-scale and spatial signa-
ture suggest that these patterns are associated with the MJO, which
results in large-scale tropical deep convection patterns propagating
eastward and influencing rainfall, especially between the western
Indian Ocean and the western-to-central tropical Pacific. The cor-
responding traveling atmospheric pattern often fades in the eastern
tropical Pacific, while eventually reappearing with lower strength
over the tropical Atlantic and then reaching again its full strength
over the Indian Ocean to complete one of its cycles.

When moving toward slightly larger time-scales [2–4 months,
Fig. 2(c)], the aforementioned high cross-degree pattern in the north-
ern Indian andwestern Pacific oceans is gradually diminished in spa-
tial extent and magnitude. We attribute this to the fact that MJO has
no stationary period and, hence, may affect also time-scales beyond
2 months, yet only at its region of strongest effect, which would be
compatible with our observations regarding the cross-degree field.

At scales between 4 and 8 months [Fig. 2(d)], we find differ-
ent high cross-degree regions in the central Pacific ocean, near the
Antarctic coastlines and in the northwestern Pacific, as well as some
smaller patches along the North American east coast and over the
Caribbean. The band around Antarctica is possibly related with the
Antarctic Oscillation (AAO) or Southern Annular Mode (SAM),48

which describes a belt of westerlies related with the oceanic Antarc-
tic Circumpolar Current (ACC) and can have large-scale effects on
rainfall over the southern part of Australia,49 South Africa,50 and
even China.51 The pattern over the northern Pacific Ocean appears
reminiscent to the North Pacific Oscillation (NPO) which primar-
ily acts on subseasonal time-scales.52 The NPO is characterized by
sea-level pressure anomalies that can trigger variations of subtrop-
ical SST patterns.53 The resulting variations in the subtropical SST
due to the NPO can in turn affect rainfall over the southern central
United States,52 Mexico,52 and China.54 It has been conjectured that
NPO can play a vital role in triggering the onset of ENSO phases.53

This result appears compatible with our observation of an elevated
cross-degree pattern in the central Pacific Ocean [Fig. 2(d)], which
could be related with such an effect of NPO on ENSO. Note, however,
that the analysis presented here is purely correlative and does not
aim at providing statements on causal effects among different large-
scale patterns, which should be the subject ofmore detailed follow-up
studies.

At scales from 8 to 16 months, we observe high cross-degrees in
the eastern-to-central Pacific ocean and a bow-shaped region from
the western tropical to central subtropical Pacific. These two patterns
closely match the previously discussed regions that are most strongly
influenced by the ENSO phenomenon. In addition, we also recover
the pattern over the southern Pacific Ocean that can be related to

the ASL and its influence on rainfall anomalies over Antarctica.55 Yet
another high cross-degree region emerges over the Indian Ocean,
which can be related with the Indian Ocean Dipole (IOD) pat-
tern, an irregular SST oscillation in the western Indian Ocean56,57

that is known to have marked teleconnections with rainfall patterns
around the globe. Specifically, the IODvariability shows negative cor-
relations with the precipitation in southern Western Australia and
South Australia,49 the southern parts of Brazil,58 and southeast Asia,59

while positive correlations exist with precipitation over China60 and
south-eastern Africa.61

At the scale of 16–32 months [Fig. 2(f)], the cross-degree pat-
terns show strong similarity with those at scales between 8 and
16months. Themost remarkable differences are that the bow-shaped
pattern in the Pacific gets much weaker while the western Indian
Ocean becomesmore prominent. In turn, the patterns in the eastern-
to-central equatorial Pacific and the southern Pacific Ocean remain
almost the same. It should be noticed that the patterns at both 8–16
and 16–32 months time-scales exhibit the closest similarities with
those obtained for the original unfiltered data. This provides evi-
dence that ocean-atmosphere interactions within these two scales
(i.e., around the annual cycle period and around two years) are most
dominant. The lower frequency contributionsmost likely result from
ENSO, which is known to be the tropical climate variability mode
with the highest amplitude of anomalies andmost widespread effects
globally. In addition, we may speculate about a possible additional
effect of the atmospheric quasibiennial oscillation, which has its core
frequency right in the identified range of time-scales.

At time-scales of 32–64 months [Fig. 2(g)], the main ENSO-
related high cross-degree region in the eastern-to-central tropical
Pacific starts to get blurred, while new regions with high cross-degree
emerge, especially in the northern tropical to subtropical Atlantic.
This pattern could be related to the Atlantic EquatorialMode (AEM),
which describes a quasiperiodic interannual warming and cooling
of the equatorial Atlantic SST.62,63 It has been shown that AEM can
affect rainfall over both adjacent and remote regions, includingWest
Africa,64 Brazil,65 and even central Europe.66

Finally, at 64–128month time-scales [Fig. 2(h)], we still find ele-
vated cross-degrees over the equatorial and southern Pacific Ocean.
Interestingly, the northern Pacific PDO signature that could have
been expected to be observable at this time-scale is widely absent
in our corresponding results. It may be hypothesized that corre-
sponding patterns could show up only when turning to even lower
frequencies. However, given the restricted time coverage of the stud-
ied data sets and increasing numerical artefacts of wavelet analyses
at the beginning and end of the records, we hesitate to extend the
present analysis toward even longer time-scales.

C. Cross-average link distances

Figure 3 shows our results for the cross-average link distance.
This measure provides a complementary picture on the strength of
the SST–P relationship by unfolding the spatial information con-
tained in the associated coupled network’s cross-linkage structure
between both fields.

The unfiltered time series [Fig. 3(a)], especially those regions
that were already dominant in the n.s.i. cross-degree [Fig. 2(a)],
exhibit short cross-link distances (red areas). This indicates that in
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FIG. 3. Same as in Fig. 2, but for the n.s.i. cross-average link distances (in km).
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these regions, SST strongly affects P, but mainly at smaller spatial
scales, which dominate over possible remote teleconnections.

At time-scales of 1–2 months, most of the tropical oceans show
mainly short cross-link distances. This could again be explained by
a strong spatially localized modulation of SST and rainfall patterns
due to the action of the MJO.

At the scale of 2–4months, we recall the largely absent high n.s.i.
cross-degree patterns that are present at other scales [Fig. 2(c)]. Here,
regions with small cross-average link distances only partly coincide
with high cross-degrees, while particularly short average cross-link
distances are found, e.g., in the eastern Pacific, over Indonesia and in
the western part of Indian Ocean [Fig. 3(c)].

For 4–8 month time-scales up to 32–64 months [Figs. 3(d)–
3(g)], most of the tropical Pacific previously identified as the most
densely connected region in the coupled SST-P network is char-
acterized by short mean cross-link distances, which again points

to a dominance of local SST effects on precipitation. In general,
this indicates that at smaller spatial scales, SST and precipitation at
monthly-to-interannual resolution are most intimately connected in
the tropics, where particularly high SSTs imply strong evaporation
and, hence, convection feeding predominantly local rainfall. How-
ever, we note again that the finding that the tropical oceans are
densely connected at short spatial scales does not imply an absence
of long-distance connections, but simply a very large amount of
short-distance connections.

Beyond these general observations, there are some other regions
over which the mean cross-link distances decrease and increase
when gradually moving from shorter to longer time-scales. For
example, for 4–8 months [Fig. 3(d)], there is a region in the tropi-
cal Atlantic with short cross-link distances, which indicate strongly
localized cross-correlations between SST and P. Over the western-
to-central north Pacific, we find similar short cross-link distances,

FIG. 4. Average zonal (a) and meridional (b) n.s.i. cross-degree from SST to the global precipitation field. (c) and (d) Same as (a) and (b) but for the n.s.i. cross-average link
distance (in km).
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which could again be related to the effect of the NPO. By moving
toward time-scales of 8–16 months [Fig. 3(e)], the cross-link dis-
tances in the tropical Atlantic increase, while those in the eastern
Indian ocean decrease as a sign of strongly localized correlations
between SST and P in this region. Interestingly, at 16–32month time-
scales [Fig. 3(f)], the cross-link distances over both tropical Atlantic
and Indian ocean increase, while only the equatorial Pacific is still
characterized by short cross-link distances. This observation could be
related to the strong spatial autocorrelation of both SST and precip-
itation in the ENSO region along with the aforementioned expected
SST-precipitation coupling associated with ENSO variability. When
proceeding to even longer time-scales of 32–64 months [Fig. 3(g)],
the pattern of short cross-link distances in the tropical Pacific shifts
toward the eastern part of the equatorial Pacific. Finally, at the time-
scale of 64–128 months [Fig. 3(h)], there is only a small region with
short cross-link distances remaining in the central tropical Pacific,
which—along with the associated cross-degree patterns—indicates a
much stronger variety of spatial link placements in the corresponding
coupled climate network.

As an important general remark regarding the spatial struc-
ture of cross-links as captured by the cross-average link distance, we
recall that the precipitation data set has global coverage including
both oceans and continents, while the SST data are necessarily spa-
tially limited. Due to the strong interdependence between SST and
surface air temperature, a change in SSTwill strongly affect the atmo-
sphere above the oceans and the resulting amount of water vapor.
In turn, our present analysis does not account for the corresponding
effect over the continents, which likely has certain implications for
the inferred link structures. Futurework should, therefore, extend the
present analysis by considering the effect of both sea and land surface
temperatures (or surface air temperatures) on precipitation using an
equivalent analysis strategy.

D. Zonal and meridional mean coupled network
properties

In order to summarize the main spatial correlation patterns
between ocean and atmosphere at different time-scales as revealed
by our coupled networks properties, we finally compute zonal and
meridional averages of n.s.i. cross-degree and n.s.i. cross-average link
distance over all grid points with available time series. This perspec-
tive highlights again the previously found high cross-degrees in the
tropics at time-scales between 8–16 and 16–32 months [Fig. 4(a)],
primarily in the eastern equatorial Pacific [Fig. 4(b)]. The corre-
sponding results, thus, demonstrate that the effect of SST variations in
the eastern equatorial Pacific (i.e., the ENSO region) on global precip-
itation is generally stronger than in any other ocean basin at annual
to shorter interannual time-scales.

Considering the zonal and meridional averages of the n.s.i.
cross-average link distance, the tropics are generally characterized by
the on average shortest cross-links among all time-scales, while the
extratropics generally exhibit longer mean links [Fig. 4(c)]. Taking
this information together with the associated cross-degree patterns,
it is likely that we observe here mainly regional effects that may
originate from temporary SST and precipitation trends reflecting
ENSO variability. In turn, some extratropical ocean regions (like the
ASL region) also affect global precipitation patterns markedly, yet

primarily at larger distances. This could be related to the fact that
tropical precipitation reacts more quickly to SST via a fast evapora-
tion–cloud formation–precipitation cycle (e.g., via local convective
activity at daily to multiday time-scales), while extratropical influ-
ences are transported via the atmospheric circulation (specifically,
planetary wave patterns) to remote regions while not having an
equally strong local effect on precipitation as tropical SSTs. Taking the
longitudinal perspective into account [Fig. 4(d)], we find that local-
ization of interdependence patterns primarily arises on seasonal to
interannual time-scales in all three ocean basins, with a focus on the
Indian and Pacific Oceans.

In general, our results indicate that the spatial localization prop-
erties of ocean-atmosphere interactions as revealed by our analysis
are mainly characteristic for the tropics at seasonal to interannual
time-scales, while (sub-) seasonal and decadal scales exhibit only few
highly and/or short-range connected patterns that are hardly visible
in the zonal and meridional averages.

IV. CONCLUSION

We have employed a complex network based framework to
investigate the effect of oceanic conditions [expressed via sea-surface
temperature (SST) patterns] on global precipitation at time-scales
ranging from monthly to decadal scales. For this purpose, we have
combined time series decomposition by the maximum overlap dis-
cretewavelet transformwith functional network analysis in a coupled
network setting.

The observed scale-specific statistical interdependence patterns
between our two variables of interest have been characterized by the
two coupled network measures n.s.i. cross-degree and n.s.i. cross-
average link length. Our analysis reveals main regions of SST that
significantly influence precipitation around the globe at different
time-scales. Notably, these regions differ among temporal scales, i.e.,
they show scale-specific behavior. By looking at the raw time series
that include variability at all scales, main interdependence patterns
between SST and precipitation are found, but information on the
associated time-scales cannot be taken into account. Our approach
unfolds this otherwise hidden information and allows separating the
effects of processes and large-scale climate patterns acting at different
characteristic time-scales.

In our case, at their native (monthly) temporal resolution, the
two considered climatological fields feature several pronounced spa-
tial patterns that resemble ENSO, PDO, and SAM, which are known
to exhibit mutual interdependences. Given the prominent role of
ENSO in global climate variability, the dominance of the eastern-
to-central tropical Pacific is compatible with expectations. However,
other (weaker) atmosphere-ocean covariability features would be
easily overlooked in this integral perspective. By decomposing the
SST and P time series into distinct time-scales, we are able to trace the
appearance and disappearance of different patterns that are related
to seasonal over interannual up to decadal variability associated with
large-scale climate phenomena. Thereby, we obtain a more explicit
picture of other climate modes with different characteristic time-
scales thatmight be important for understanding global precipitation
patterns, which is a relevant task in the context of improving future
long-term precipitation and drought forecasts.
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The substantial variation of the SST-precipitation interdepen-
dence globally and across time-scales that is unraveled by the
proposed framework provides an exciting perspective for under-
standing ocean-atmosphere coupling and resulting climate variabil-
ity. Beyond climate, similar approaches are potentially useful in other
fields as well, including neurophysiology67 or economics, or gener-
ally for understanding multicomponent complex systems and their
spatiotemporal dynamics.68

ACKNOWLEDGMENTS

This study has been financially supported by the German
Research Foundation (DFG) via the International Research Train-
ing Group IRTG 1740 and the Research Training Group GRK 2043/1
(NatRiskChange), as well as by the German Federal Ministry for
Education and Research (BMBF) via the BMBF Young Investigators
Group CoSy-CC2: Complex Systems Approaches to Understand-
ing Causes and Consequences of Past, Present and Future Climate
Change (Grant No. 01LN1306A) and the Belmont Forum/JPI Cli-
mate project GOTHAM (Grant No. 01LP16MA). Some of the ideas
presented in this work have been developed in the course of the
bilateral German-Czech project “Spatio-temporal characterization of
multiscale and cross-scale atmospheric interactions: Unveiling com-
plex causality patterns for anticipation of future regional climate
change” jointly supported by the German Academic Exchange Ser-
vice (DAAD) and the Academy of Sciences of the Czech Republic
under the DAAD Project No. 57154685.

The authors gratefully acknowledge the European Regional
Development Fund (ERDF), the German Federal Ministry of Edu-
cation and Research, and the Land Brandenburg for supporting
this project by providing resources on the high performance com-
puter system at the Potsdam Institute for Climate Impact Research.
All computations have been performed using the Python package
pyunicorn.69. The author also would like to thank Catrin Kirsch
for her comments on the final revision of the paper.

REFERENCES
1E. B. Kraus and J. A. Businger, Atmosphere-Ocean Interaction (Oxford University
Press, 1994).
2S. Gadgil, P. V. Joseph, and N. V. Joshi, “Ocean-atmosphere coupling over mon-
soon regions,” Nature 312, 141–143 (1984).
3K. E. Trenberth and J. W. Hurrell, “Decadal atmosphere-ocean variations in the
Pacific,” Clim. Dyn. 9(6), 303–319 (1994).
4K. E. Trenberth, “The definition of El Niño,” Bull. Am. Meteorol. Soc. 78(12),
2771–2778 (1997).
5C. Deser, R. Tomas, M. Alexander, and D. Lawrence, “The seasonal atmospheric
response to projected arctic sea ice loss in the late twenty-first century,” J. Clim.
23(2), 333–351 (2010).
6A. Agarwal, N. Marwan, R. Maheswaran, B. Merz, and J. Kurths, “Quantifying
the roles of single stations within homogeneous regions using complex network
analysis,” J. Hydrol. (Amst) 563, 802–810 (2018).
7M.K. Roxy, K. Ritika, P. Terray, and S.Masson, “The curious case of IndianOcean
warming,” J. Clim. 27(22), 8501–8509 (2014).
8K. E. Trenberth and D. J. Shea, “Relationships between precipitation and surface
temperature,” Geophys. Res. Lett. 32(14), L14703, https://doi.org/10.1029/2005
GL022760 (2005).
9B. Wang, Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes,
“Fundamental challenge in simulation and prediction of summer monsoon rain-
fall,” Geophys. Res. Lett. 32(15), L15711, https://doi.org/10.1029/2005GL022734
(2005).

10D. Looney, A. Hemakom, and D. P. Mandic, “Intrinsic multi-scale analysis: A
multi-variate empirical mode decomposition framework,” Proc. R. Soc. Math.
Phys. Eng. Sci. 471(2173), 20140709 (2015).
11K. Coughlin and K. K. Tung, “Eleven-year solar cycle signal through-
out the lower atmosphere,” J. Geophys. Res., [Atmos.] 109(D21), D21105,
https://doi.org/10.1029/2004JD004873 (2004).
12K. Steinhaeuser, A. R. Ganguly, and N. V. Chawla, “Multivariate and multiscale
dependence in the global climate system revealed through complex networks,”
Clim. Dyn. 39(3), 889–895 (2012).
13G. A. Bradshaw and B. A. McIntosh, “Detecting climate-induced patterns using
wavelet analysis,” Environ. Pollut. 83(1), 135–142 (1994).
14K.-M. Lau andH.Weng, “Climate signal detection usingwavelet transform:How
to make a time series sing,” Bull. Am. Meteorol. Soc. 76(12), 2391–2402 (1995).
15N. Jajcay, J. Hlinka, S. Kravtsov, A. A. Tsonis, and M. Paluš, “Time scales of
the European surface air temperature variability: The role of the 7–8 year cycle,”
Geophys. Res. Lett. 43(2), 902–909, https://doi.org/10.1002/grl.v43.2 (2016).
16M. Paluš, “Linked by dynamics: Wavelet-based mutual information rate as
a connectivity measure and scale-specific networks,” in Advances in Nonlinear
Geosciences, edited by A. A. Tsonisor (Springer International Publishing, 2018),
pp. 427–463.
17M. Paluš, “Multiscale atmospheric dynamics: Cross-frequency phase-amplitude
coupling in the air temperature,” Phys. Rev. Lett. 112, 078702 (2014).
18A. A. Tsonis and P. J. Roebber, “The architecture of the climate network,” Physica
A 333, 497–504 (2004).
19A. A. Tsonis, K. L. Swanson, and P. J. Roebber, “What do networks have to do
with climate?,” Bull. Am. Meteorol. Soc. 87(5), 585–596 (2006).
20J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “The backbone of the climate
network,” Europhys. Lett. 87(4), 48007 (2009).
21J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “Complex networks in climate
dynamics,” Eur. Phys. J. Spec. Top. 174(1), 157–179 (2009).
22D. Helbing, D. Brockmann, T. Chadefaux, K. Donnay, U. Blanke, O. Woolley-
Meza, M. Moussaid, A. Johansson, J. Krause, S. Schutte, and M. Perc, “Saving
human lives: What complexity science and information systems can contribute,”
J. Stat. Phys. 158(3), 735–781 (2015).
23J. F. Donges, H. C. H. Schultz, N. Marwan, Y. Zou, and J. Kurths, “Investigating
the topology of interacting networks,” Eur. Phys. J. B 84(4), 635–651 (2011).
24A. Feng, Z. Gong, Q. Wang, and G. Feng, “Three-dimensional air–sea interac-
tions investigated with bilayer networks,” Theor. Appl. Climatol. 109(3), 635–643
(2012).
25M.Wiedermann, J. F. Donges, D. Handorf, J. Kurths, and R. V. Donner, “Hierar-
chical structures in NorthernHemispheric extratropical winter ocean–atmosphere
interactions,” Int. J. Climatol. 37(10), 3821–3836 (2016).
26J. M. Peters and S. Kravtsov, “Origin of non-gaussian regimes and predictability
in an atmospheric model,” J. Atmos. Sci. 69(8), 2587–2599 (2012).
27M. Perron and P. Sura, “Climatology of non-gaussian atmospheric statistics,”
J. Clim. 26(3), 1063–1083 (2013).
28P. Sura and A. Hannachi, “Perspectives of non-gaussianity in atmospheric syn-
optic and low-frequency variability,” J. Clim. 28(13), 5091–5114 (2015).
29A. Hannachi, D. M. Straus, C. L. E. Franzke, S. Corti, and T. Woollings, “Low-
frequency nonlinearity and regime behavior in the northern hemisphere extrat-
ropical atmosphere,” Rev. Geophys. 55(1), 199–234, https://doi.org/10.1002/2015
RG000509 (2017).
30M. Linz, G. Chen, and Z. Hu, “Large-scale atmospheric control on non-
gaussian tails ofmidlatitude temperature distributions,”Geophys. Res. Lett. 45(17),
9141–9149, https://doi.org/10.1029/2018GL079324 (2018).
31C. Ciemer, N. Boers, H.M. J. Barbosa, J. Kurths, andA. Rammig, “Temporal evo-
lution of the spatial covariability of rainfall in South America,” Clim. Dyn. 51(1),
371–382 (2018).
32M. Rathinasamy, R. Khosa, J. Adamowski, C. Sudheer, G. Partheepan, J. Anand,
and B. Narsimlu, “Wavelet-based multiscale performance analysis: An approach to
assess and improve hydrological models,” Water. Resour. Res. 50(12), 9721–9737,
https://doi.org/10.1002/2013WR014650 (2014).
33D. B. Percival, “Analysis of geophysical time series using discrete wavelet
transforms: An overview,” in Nonlinear Time Series Analysis in the Geosciences:
Applications in Climatology, Geodynamics and Solar-Terrestrial Physics, edited by
R. V. Donner and S. M. Barbosa (Springer, Berlin, 2008), pp. 61–79.

Chaos 29, 063116 (2019); doi: 10.1063/1.5095565 29, 063116-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1038/312141a0
https://doi.org/10.1007/BF00204745
https://doi.org/10.1175/2009JCLI3053.1
https://doi.org/10.1016/j.jhydrol.2018.06.050
https://doi.org/10.1175/JCLI-D-14-00471.1
https://doi.org/10.1029/2005GL022760
https://doi.org/10.1029/2005GL022734
https://doi.org/10.1098/rspa.2014.0709
https://doi.org/10.1029/2004JD004873
https://doi.org/10.1007/s00382-011-1135-9
https://doi.org/10.1016/0269-7491(94)90031-0
https://doi.org/10.1002/grl.v43.2
https://doi.org/10.1103/PhysRevLett.112.078702
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1175/BAMS-87-5-585
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1140/epjst/e2009-01098-2
https://doi.org/10.1007/s10955-014-1024-9
https://doi.org/10.1140/epjb/e2011-10795-8
https://doi.org/10.1007/s00704-012-0600-7
https://doi.org/10.1002/joc.4956
https://doi.org/10.1175/JAS-D-11-0316.1
https://doi.org/10.1175/JCLI-D-11-00504.1
https://doi.org/10.1175/JCLI-D-14-00572.1
https://doi.org/10.1002/2015RG000509
https://doi.org/10.1029/2018GL079324
https://doi.org/10.1007/s00382-017-3929-x
https://doi.org/10.1002/2013WR014650


Chaos ARTICLE scitation.org/journal/cha

34A. Agarwal, R. Maheswaran, N. Marwan, L. Caesar, and J. Kurths, “Wavelet-
based multiscale similarity measure for complex networks,” Eur. Phys. J. B 91(11),
296 (2018).
35A. Agarwal, N. Marwan, M. Rathinasamy, B. Merz, and J. Kurths, “Multi-scale
event synchronization analysis for unravelling climate processes: A wavelet-based
approach,” Nonlinear Process. Geophys. 24(4), 599–611 (2017).
36J. Kurths, A. Agarwal, N. Marwan, M. Rathinasamy, L. Caesar, R. Krishnan, and
B. Merz, “Unraveling the spatial diversity of Indian precipitation teleconnections
via nonlinear multi-scale approach,” Nonlinear Process. Geophys. Discuss. (to be
published).
37S. Lovejoy, “Spectra, intermittency, and extremes of weather, macroweather and
climate,” Sci. Rep. 8(1), 12697 (2018).
38A. Radebach, R. V. Donner, J. Runge, J. F. Donges, and J. Kurths, “Disentangling
different types of El Niño episodes by evolving climate network analysis,” Phys.
Rev. E 88(5), 052807 (2013).
39F. Arizmendi, A. C. Martí, and M. Barreiro, “Evolution of atmospheric connec-
tivity in the 20th century,” Nonlinear Process. Geophys. 21(4), 825–839 (2014).
40A. Agarwal, “Unraveling spatio-temporal climatic patterns via multi-scale com-
plex networks,” Ph.D. thesis (University of Potsdam, 2019).
41J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “Node-weighted mea-
sures for complex networks with spatially embedded, sampled, or differently sized
nodes,” Eur. Phys. J. B 85(1), 38 (2012).
42N. J. Mantua and S. R. Hare, “The pacific decadal oscillation,” J. Oceanography
58(1), 35–44 (2002).
43S.-W. Yeh, W. Cai, S.-K. Min, M. J. McPhaden, D. Dommenget, B. Dewitte, M.
Collins, K. Ashok, S.-I. An, B.-Y. Yim, and J.-S. Kug, “Enso atmospheric teleconnec-
tions and their response to greenhouse gas forcing,” Rev. Geophys. 56(1), 185–206,
https://doi.org/10.1002/rog.v56.1 (2018).
44J. C. H. Chiang and D. J. Vimont, “Analogous pacific and atlantic merid-
ional modes of tropical atmosphere–ocean variability,” J. Clim. 17(21), 4143–4158
(2004).
45E. Di Lorenzo, G. Liguori, N. Schneider, J. C. Furtado, B. T. Ander-
son, and M. A. Alexander, “Enso and meridional modes: A null hypoth-
esis for pacific climate variability,” Geophys. Res. Lett. 42(21), 9440–9448,
https://doi.org/10.1002/2015GL066281 (2015).
46R. C. Wills, T. Schneider, J. M. Wallace, D. S. Battisti, and D. L. Hartmann, “Dis-
entangling global warming multidecadal variability, and El Niño in pacific tem-
peratures,” Geophys. Res. Lett. 45(5), 2487–2496, https://doi.org/10.1002/grl.v45.5
(2018).
47Y. Y. S. Yiu, “El Niño Southern Oscillation teleconnections and their effects on
the Amundsen Sea region,” Thesis (University of Cambridge, 2018).
48J. C. Rogers andH. van Loon, “Spatial variability of sea level pressure and 500mb
height anomalies over the Southern Hemisphere,” Monthly Weather Rev. 110(10),
1375–1392 (1982).
49J. S. Risbey, M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon,
“On the remote drivers of rainfall variability in Australia,” Monthly Weather Rev.
137(10), 3233–3253 (2009).
50N. P. Gillett, T. D. Kell, and P. D. Jones, “Regional climate impacts of the Southern
annular mode,” Geophys. Res. Lett. 33(23), L23704, https://doi.org/10.1029/2006
GL027721 (2006).
51Z. Wu, J. Li, B. Wang, and X. Liu, “Can the Southern Hemisphere annular mode
affect China winter monsoon?,” J. Geophys. Res., [Atmos.] 114(D11), D11107,
https://doi.org/10.1029/2008JD011501 (2009).

52M. E. Linkin and S. Nigam, “The North Pacific Oscillation–West Pacific tele-
connection pattern: Mature-phase structure and winter impacts,” J. Clim. 21(9),
1979–1997 (2008).
53S.-J. Shin and S.-I. An, “Interdecadal change in the relationship between the
North Pacific Oscillation and the Pacific meridional mode and its impact on
ENSO,” Asia-Pacific J. Atmos. Sci. 54(1), 63–76 (2018).
54L. Wang andW. Chen, “An intensity index for the East Asian winter monsoon,”
J. Clim. 27(6), 2361–2374 (2014).
55M. N. Raphael, G. J. Marshall, J. Turner, R. L. Fogt, D. Schneider, D. A. Dixon,
J. S. Hosking, J. M. Jones, and W. R. Hobbs, “The Amundsen Sea low: Variability,
change, and impact on Antarctic climate,” Bull. Am.Meteorol. Soc. 97(1), 111–121
(2016).
56N. H. Saji, B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, “A dipole
mode in the tropical Indian Ocean,” Nature 401(6751), 360–363 (1999).
57P. J. Webster, A. M. Moore, J. P. Loschnigg, and R. R. Leben, “Coupled ocean-
atmosphere dynamics in the Indian Ocean during 1997–98,” Nature 401(6751),
356–360 (1999).
58S. C. Chan, S. K. Behera, and T. Yamagata, “Indian Ocean dipole influence
on South American rainfall,” Geophys. Res. Lett. 35(14), L14S12, https://doi.org/
10.1029/2008GL034204 (2008).
59N. Singhrattna, B. Rajagopalan,M. Clark, and K. Krishna Kumar, “Seasonal fore-
casting of Thailand summer monsoon rainfall,” Int. J. Climatol. 25(5), 649–664
(2005).
60Y. Qiu,W. Cai, X. Guo, and B. Ng, “The asymmetric influence of the positive and
negative IOD events on China’s rainfall,” Sci. Rep. 4, 4943 (2014).
61C. J. C. Reason, “Subtropical Indian Ocean SST dipole events and south-
ern African rainfall,” Geophys. Res. Lett. 28(11), 2225–2227, https://doi.org/
10.1029/2000GL012735 (2001).
62J. F. Lübbecke, B. Rodríguez-Fonseca, I. Richter, M. Marín-Rey, T. Losada, I.
Polo, and N. S. Keenlyside, “Equatorial Atlantic variability—modes, mechanisms,
and global teleconnections,” Wiley Interdiscip. Rev. Clim. Change 9(4), e527
(2018).
63E. Mohino and T. Losada, “Impacts of the Atlantic equatorial mode in a warmer
climate,” Clim. Dyn. 45(7), 2255–2271 (2015).
64T. Losada, B. Rodríguez-Fonseca, S. Janicot, S. Gervois, F. Chauvin, and P. Ruti,
“A multi-model approach to the Atlantic equatorial mode: Impact on the West
African monsoon,” Clim. Dyn. 35(1), 29–43 (2010).
65A. Giannini, R. Saravanan, and P. Chang, “The preconditioning role of trop-
ical Atlantic variability in the development of the ENSO teleconnection: Impli-
cations for the prediction of Nordeste rainfall,” Clim. Dyn. 22(8), 839–855
(2004).
66J. García-Serrano, T. Losada, and B. Rodríguez-Fonseca, “Extratropical atmo-
spheric response to the Atlantic Niño decaying phase,” J. Clim. 24(6), 1613–1625
(2011).
67A. Perinelli, D. E. Chiari, and L. Ricci, “Correlation in brain networks at different
time scale resolution,” Chaos 28(6), 063127 (2018).
68K. Gupta and G. Ambika, “Role of time scales and topology on the dynamics of
complex networks,” e-print arXiv:1810.00687 (2018).
69J. F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q. Y. Feng,
L. Tupikina, V. Stolbova, R. V. Donner, N. Marwan, H. A. Dijkstra, and
J. Kurths, “Unified functional network and nonlinear time series analysis
for complex systems science: The pyunicorn package,” Chaos 25(11), 113101
(2015).

Chaos 29, 063116 (2019); doi: 10.1063/1.5095565 29, 063116-12

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1140/epjb/e2018-90460-6
https://doi.org/10.5194/npg-24-599-2017
https://doi.org/10.5194/npg-2019-20
https://doi.org/10.1038/s41598-018-30829-4
https://doi.org/10.1103/PhysRevE.88.052807
https://doi.org/10.5194/npg-21-825-2014
https://doi.org/10.1140/epjb/e2011-20678-7
https://doi.org/10.1023/A:1015820616384
https://doi.org/10.1002/rog.v56.1
https://doi.org/10.1175/JCLI4953.1
https://doi.org/10.1002/2015GL066281
https://doi.org/10.1002/grl.v45.5
https://doi.org/10.1175/2009MWR2861.1
https://doi.org/10.1029/2006GL027721
https://doi.org/10.1029/2008JD011501
https://doi.org/10.1175/2007JCLI2048.1
https://doi.org/10.1007/s13143-017-0060-1
https://doi.org/10.1175/JCLI-D-13-00086.1
https://doi.org/10.1175/BAMS-D-14-00018.1
https://doi.org/10.1038/43854
https://doi.org/10.1038/43848
https://doi.org/10.1029/2008GL034204
https://doi.org/10.1002/(ISSN)1097-0088
https://doi.org/10.1038/srep04943
https://doi.org/10.1029/2000GL012735
https://doi.org/10.1007/s00382-015-2471-y
https://doi.org/10.1007/s00382-009-0625-5
https://doi.org/10.1007/s00382-004-0420-2
https://doi.org/10.1175/2010JCLI3640.1
https://doi.org/10.1063/1.5025242
http://arxiv.org/abs/arXiv:1810.00687
https://doi.org/10.1063/1.4934554

	I. INTRODUCTION
	II. DATA AND METHODS
	A. Description of the data
	B. Analysis strategy
	C. Maximum overlap discrete wavelet transform
	D. Coupled climate networks
	1. N.s.i. cross-degree
	2. N.s.i. cross-average link distance


	III. RESULTS AND DISCUSSION
	A. Cross-degree at integrated time-scales
	B. Scale-specific cross-degree patterns
	C. Cross-average link distances
	D. Zonal and meridional mean coupled network properties

	IV. CONCLUSION
	ACKNOWLEDGMENTS

