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Abstract – We propose a method to reconstruct and analyze a complex network from data
generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of
time series analysis and betweenness centrality of the complex network theory. We show that this
approach reveals a rich internal structure in complex climate networks constructed from reanalysis
and model surface air temperature data. Our novel method uncovers peculiar wave-like structures
of high-energy flow, that we relate to global surface ocean currents. This points to a major role
of the oceanic surface circulation in coupling and stabilizing the global temperature field in the
long-term mean (140 years for the model run and 60 years for reanalysis data). We find that these
results cannot be obtained using classical linear methods of multivariate data analysis, and have
ensured their robustness by intensive significance testing.

Copyright c© EPLA, 2009

Introduction. – In the last decade, the complex
network paradigm has proven to be a fruitful tool for
the investigation of complex systems in various areas of
science, e.g., the internet and world wide web in computer
science, food webs, gene expression and neural networks
in biology, and citation networks in social science [1]. The
intricate interplay between the structure and dynamics
of real networks has received considerable attention [2].
Particularly, synchronization arising by the transfer of
dynamical information in complex network topologies has
been studied intensively [3]. The application of complex
network theory to climate science is a young field, where
only few studies have been reported recently [4–8]. The
vertices of a climate network are identified with the
spatial grid points of an underlying global climate data
set. Edges are added between pairs of vertices depending
on the degree of statistical interdependence between the
corresponding pairs of anomaly time series taken from the
climate data set. Climate networks enable novel insights
into the topology and dynamics of the climate system
over many spatial scales ranging from local properties as
the number of first neighbors of a vertex v (the degree
centrality kv) to global network measures such as the
clustering coefficient or the average path length. The local
degree centrality and related measures have been used
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to identify supernodes (regions of high degree centrality)
and to associate them to known dynamical interrelations
in the atmosphere, called teleconnection patterns, most
notably the North Atlantic Oscillation (NAO) [4]. On
the global scale, climate networks were found to possess
“small-world” properties due to long-range connections
(edges linking geographically very distant vertices), that
stabilize the climate system and enhance the energy
and information transfer within it [4]. By studying the
prevalence of long-range connections in El Niño and La
Niña climate networks [5] and the time dependence of
the number of stable edges [6], it has been shown very
recently, that the El Niño-Southern Oscillation (ENSO)
has a strong impact on the stability of the climate system.
Until now, researchers have used the linear cross-

correlation function of pairs of anomaly time series
to quantify the degree of statistical interdependence
between different spatial regions. But the highly nonlin-
ear processes at work in the climate system call for the
application of nonlinear methods to obtain more reliable
results. Here we also use mutual information [9] to
construct climate networks allowing to capture linear and
nonlinear relationships between time series [8]. Further-
more we use a measure of vertex centrality, betweenness
(BC), that is defined locally but takes into account global
topological information. Combining these two techniques,
we uncover peculiar wave-like structures in the BC fields
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of climate networks constructed from monthly averaged
reanalysis and atmosphere-ocean coupled general circu-
lation model (AOGCM) surface air temperature (SAT)
data. Akin to the homonymous data highways of the
internet, these BC structures form the backbone of the
SAT network, bundling most of the energy flow between
remote regions. Some major features of the backbone
appear to be closely related to surface ocean currents
pointing to an essential role of the oceanic surface circu-
lation in stabilizing the climate system by promoting the
global flow of energy, mainly in the form of heat. Note
that these insights are conceptually new and cannot be
obtained using classical methods of climatology such as
principal component analysis (PCA) or singular spectrum
analysis (SSA) of anomaly fields [10], because these are
by design local in a network sense and are not suitable to
study local flow measures depending on a global network
topology. We have performed intensive statistical tests
with various types of surrogates to ensure the robustness
of our results. The methodology developed in this letter
has the potential to be universally applicable to extract
the energy, matter or information flow structure in any
spatially extended dynamical system from observations
taken from the real world, experiments and simulations.
Our results are hence of interest for several branches
of physics as well as various applications, e.g., fluid
dynamics (turbulence), plasma physics, biological physics
(population dynamics, neural networks, cell models). As
demonstrated by its application to the climate system,
our method is particularly relevant for the analysis of
systems with highly heterogeneous boundary conditions
and forcing fields, that are found frequently in nature.

Data. – We utilize the monthly averaged global
SAT field to construct climate networks, that allows to
directly capture the complex dynamics on the interface
between ocean and atmosphere due to heat exchange and
other local processes. SAT therefore enables us to study
atmospheric as well as oceanic dynamics using the same
climate network. We use reanalysis data provided by the
National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) [11]
and model output from the World Climate Research
Programme’s (WCRP’s) Coupled Model Intercomparison
Project phase 3 (CMIP3) multimodel data set [12].
For optimal comparability with the reanalysis data, we
choose a 20th century reference run (20c3m, as defined in
the IPCC AR4) by the Hadley Centre HadCM3 model.
A data set consists of a regular spatio-temporal grid
with time series xi(t) associated to every spatial grid
point i at latitude λi and longitude φi. Start and end
dates, length of time series T , latitudinal resolution ∆λ,
longitudinal resolution ∆φ and the number of vertices of
the corresponding global climate network N are given in
table 1.

Methodology. – i) To minimize the bias introduced
by the external solar forcing common to all time series in

Table 1: Properties of global surface air temperature data sets.

NCEP/NCAR HadCM3
Period 01/1948–12/2007 01/1860–12/1999
T (months) 720 1680
∆λ (◦) 2.5 2.5
∆φ (◦) 2.5 3.75
N 10224 6816

the data set, we calculate anomaly time series ai(t) from
the xi(t), i.e., remove the mean annual cycle by phase
averaging. Up to this point, we follow the method used
previously by [5,6]. It is known, that the annual cycle
induces higher-order effects such as seasonal variability of
anomaly time series variance. We find that using only data
from a particular season to avoid biases due to this effect
does not alter our results substantially, so that we choose
to use the whole data set for a more accurate evaluation of
interdependence. Furthermore we normalize the anomaly
time series to zero mean and unit variance.
ii) Mutual information (MI) is a measure from informa-

tion theory, that can be interpreted as the excess amount
of information generated by falsely assuming the two time
series ai and aj to be independent, and is able to detect
linear as well as nonlinear relationships [9]. MI can be esti-
mated using

Mij =
∑

µν

pij(µ, ν) log
pij(µ, ν)

pi(µ)pj(ν)
, (1)

where pi(µ) is the probability density function (PDF)
of the time series ai, and pij(µ, ν) is the joint PDF of
a pair (ai, aj). By definition, Mij is symmetric, so that
Mij =Mji. Note that in principle, one can evaluate a
time delayed MI [9]. This is appropriate when studying
climate networks on smaller time scales using data sets
with (sub-)diurnal resolution [6]. However, in the present
work, we intend to study long-term structural properties
of the climate system on a scale of O(102) years using
monthly averaged data. Most physical mechanisms of
global information transfer in the SAT field such as
travelling Rossby waves, heat exchange between ocean and
atmosphere or the advection of heat by surface currents
in the ocean act at time scales of less than one month.
Therefore, it is reasonable to calculate MI at zero lag
between anomaly time series.
iii) We now construct the climate network by thresh-

olding the MI matrix Mij , i.e., only pairs of vertices (i, j)
that satisfy Mij > τ are regarded as linked, where τ is the
threshold. Using the Heaviside function Θ(x), the adja-
cency matrix Aij of the climate network is given by Aij =
Θ(Mij − τ)− δij , where δij is the Kronecker delta. Note
that Aij inherits its symmetry from Mij and the resulting
climate network is an undirected and unweighted simple
graph. One could construct a network with edges (i, j)
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weighted by Mij . At this stage, we keep our method
simple by studying an unweighted network. We suggest
that weight information could help to identify the back-
bone structure even more clearly, however, would not alter
our conclusions below, because we use only a small number
of edges with high MI that dominate the network.
iv) We find, that network characteristics, such as BC,

clustering coefficient and average path length, are depen-
dent on the choice of the threshold τ . When comparing
climate networks constructed from AOGCM and reanaly-
sis data, it is consequently more meaningful to constrain
the edge density ρ= 2E/(N(N − 1)), where E gives the
total number of edges, than to fix τ as it was done in all
earlier works [4–6]. The threshold τ = τ(ρ) is thus chosen
to yield a prescribed edge density ρ. The PDF of MI P (M)
over all pairs Mij is found to have a connected support,
so that the edge density function ρ(τ) =

∫∞
τ
dMP (M) is

strictly monotonic decreasing with τ and induces a one
to one correspondence between τ and ρ. Note that the
backbone of the climate network is most clearly observed
at small ρ with corresponding large threshold τ , that is
very unlikely to be exceeded by chance, as we reassured
using significance tests based on randomly shuffled time
series, Fourier surrogates [9] and twin surrogates [13]. We
fix the edge density at ρ= 0.005, resulting in thresholds
of τ1 = 0.398 for the HadCM3 data and τ2 = 0.624 for the
reanalysis data. The remaining 0.5% of all possible edges
correspond to statistically significant and robust relation-
ships (see below). In concordance with this observation, we
find that small variations of ρ from the chosen value do not
alter the backbone structure significantly. The remaining
edges are distributed heterogenously as they attach prefer-
entially to pronounced supernodes, their range extending
from local to global (teleconnections), which is consistent
with earlier works [4,8].
v) Having constructed a climate network, we can finally

quantify the importance of a small part of the Earth’s
surface (represented by a single vertex v) for the global
flow of energy within the SAT field, that gives rise to the
pairwise dynamical interdependencies measured by MI.
Vertices play distinct roles in the energy transmission
throughout the network, some of them show a higher
capability as compared to others. This capability can be
quantified by the betweenness BCv. Assume that energy
travels through the network on shortest paths. We then
regard a vertex v to be important for the energy transport
in the network, if it is traversed by a large number of all
existing shortest paths [14]. The betweenness centrality is
defined as

BCv =
N∑

i,j �=v

σij(v)

σij
, (2)

∀v ∈ (1, . . . , N), where σij(v) gives the number of shortest
paths from i to j, that include v. Here the contribution
of shortest paths is weighted by their respective multi-
plicity σij . Because the shortest paths considered contain
only edges corresponding to pairs of highly dynamically

interrelated time series, BC can be interpreted as a local
measure of dynamical information flow. Since we use it
to analyze a temperature field we nevertheless prefer to
view BC more fundamentally as a measure of the flow
of energy, mainly in the form of heat. BC is conceptu-
ally distinct from other commonly used vertex centrality
measures, e.g., degree and closeness centrality, and hence
enables us to uncover interesting novel structural features
of climate networks [8].

Results. – Following the method outlined above, we
uncover peculiar wave-like structures of high BC in fields
of both reanalysis and model SAT climate networks
(fig. 1). In analogy with the internet, we call the network
of these channels of high-energy flow the backbone of
the climate network. We observe that prominent mainly
meridional features of the backbone tend to approach the
equator tangentially, as one would expect from modes of
the atmospheric and oceanic general circulation due to
the vanishing coriolis force at the equator [15]. There
is also a qualitative agreement on the location of major
backbone structures for both reanalysis (fig. 1(a)) and
model networks (fig. 1(b)), e.g., the high BC channel over
the Atlantic Ocean and the backbone structures over the
eastern Pacific Ocean, both connecting the Arctic with the
Antarctic.
The BC field of the MI climate networks considered

here shows qualitative and quantitative deviations when
compared to climate networks constructed using the linear
Pearson correlation (PC) (fig. 2), while the backbone is
clearly seen in both types of networks. The observed devi-
ations could be partly due to a heterogeneous distrib-
ution of Shannon entropy among the ai(t), introducing
a bias in the calculation of Mij . Also it is well known
that the nonlinear features of temperature dynamics might
vary among reanalysis data sets, among climate models as
well as between reanalysis and model data sets. Never-
theless we argue in [8], that some of the deviations in
the BC field may be attributable to nonlinear physical
processes in the climate system. Particularly, we find that
edges corresponding to nonlinear statistical interrelation-
ships are present in the MI climate network, which are
excluded in the PC network at the same restrictive edge
density level.
Note that the strongest backbone structures lie mainly

over the ocean and avoid to cross the land in both
model and reanalysis climate networks. Therefore a phys-
ical mechanism involving an atmosphere-ocean coupling
might contribute to the energy transport in the SAT
field measured by BC. Indeed, some of the strongest
features found in the NCEP/NCAR and HadCM3 BC
fields (fig. 1(a) and 1(b)) resemble closely major surface
ocean currents (fig. 1(c)). For example, note the strong BC
structures off the west coast of North and South America
that resemble the Alaska and Peru current, and the back-
bone feature along the west coasts of Africa and Europe
following the path of the Canary and Norwegian currents.

48007-p3



J. F. Donges et al.

(a)

Betweenness (log10(BC+1))

Betweenness (log10(BC+1))

(b)

(c)
Peru

Gu

lfS
tream

Ku
ros

hi
o

N

orw
egian

Alaska

Can
ar

y

Fig. 1: (Colour on-line) a) BC for the NCEP/NCAR reanalysis
SAT MI network, and b) for the HadCM3 SAT network.
Both networks are constructed at edge density ρ= 0.005 using
MI. c) A schematic map of global surface ocean currents,
after [16]. Note that some features of the backbone in a) and
b) correspond closely to ocean surface currents shown in c),
e.g., the Alaska, Peru and Canary currents.

These observations can be understood considering the
strong coupling between sea surface temperature (SST)
and SAT over the ocean via heat flux. Temperature anom-
alies in SST are advected by the surface ocean currents
and transfered to the SAT field via heat flux coupling.

Betweenness difference (log10)

Fig. 2: (Colour on-line) Normalized difference field ∆BCv =
|BCPv −BC

M

v |/
√

〈BCPw 〉w〈BC
M
w 〉w of BC fields BC

P

v and
BCMv , respectively calculated from PC and MI HadCM3 SAT
climate networks at ρ= 0.005.

Therefore, ocean currents provide a physical mechanism
for the transport of energy together with dynamical infor-
mation on localized linear structures over large distances.
However, no clear traces of the strong western boundary
currents (WBCs) such as the Gulf Stream or the Kuroshio
are visible in the backbone structure (fig. 1(b)). This might
be due to the fact, that WBCs are much narrower than the
eastern boundary currents discussed above [15], so that
the effect of WBCs is not resolved by the grid underly-
ing the HadCM3 climate network (see table 1). Note that
using higher-resolution reanalysis data (fig. 1(a)) and SAT
data taken from the AOGCM ECHAM5 [12], we find that
our method does indeed detect WBCs. Here it should be
pointed out again that we are analyzing the SAT field,
hence purely atmospheric effects, e.g., planetary waves,
also contribute to the BC field and might explain some of
its wave-like features, particularly over land.
Backbone structures are not seen in fields of the comple-

mentary random walk betweenness [17] which measures
diffusive flow in a network. This further supports our
argument that shortest path betweenness (BC) measures
convective energy flow in a spatially extended network and
is consistent with extremalization principles of physics,
e.g., the Hamiltonian principle, interpreted within a graph
theoretical framework.
To exclude the possibility that the observed backbone

structures over the ocean might be simply due to local
anomalies in the SST-SAT gradient caused by surface
currents, we have calculated the gradient field from the
model run that we used to construct the HadCM3 climate
network, and found that the SST-SAT gradient and BC
are not correlated (fig. 3). Furthermore, the backbone
is neither seen in fields of degree nor closeness central-
ity [8,14], while BC statistically shows some correlation
with these centrality measures (fig. 4). Nevertheless there
is a notable tendency of high BC vertices to have a small
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Fig. 3: (Colour on-line) The mean SAT-SST gradient
field 〈∆Tv(t)〉t = 〈SATv(t)〉t−〈SSTv(t)〉t calculated from the
HadCM3 SAT and SST data sets [12], both taken from the
20c3m run.

Fig. 4: Scatter plots of betweenness BCv against degree kv
(left panel) and closeness (CCv, [14]) (right panel) for the
HadCM3 SAT MI climate network at ρ= 0.005. Specifically,
the Spearman’s rank correlation coefficients of the centrality
fields are rs(kv, BCv) = 0.25 and rs(CCv, BCv) = 0.30.

degree, suggesting that they act as bottlenecks of energy
flow in the network. Therefore we conclude that the back-
bone structures observed in model and reanalysis networks
are neither a trivial response to local anomalies in the
SST-SAT gradient nor artifacts of chains of supernodes
with high degree and closeness centrality.
It is noteworthy that due to the given grids (table 1), the

vertex density on the Earth’s surface is maximum at the
poles and decreases towards the equator. However, prelim-
inary results using a density invariant generalization of BC
suggest that our results are not appreciably impacted by
this inhomogeneity.

Significance testing. – To ensure the statistical
robustness of our results on the network level, we
test the null hypothesis, that the climate network is a
random graph with a given degree sequence. Using the
configuration model and a link switching method [1],
we generate a Monte Carlo ensemble of 100 networks,

BC Z-score (log10)

(a)

(b)

BC Z-score (log10)

Fig. 5: (Colour on-line) Z-score field Zv = (BCv −m(BC
r

v))/
σ(BCrv) of the BC field with respect to a configuration model
ensemble (a) and an ensemble based on twin surrogate data
sets (b) with both n= 100 members calculated for the HadCM3
SAT MI climate network at ρ= 0.005 [18]. m(BCrv) and
σ(BCrv) denote the ensemble mean and standard deviation of
BC at each vertex v, respectively. If |Zv| ≫ 1, we can consider
BCv to be significant with respect to the chosen network
model. The backbone is recognizable with a large Z-score,
indicating its statistical significance.

that have approximately the same degree sequence as
the reconstructed climate network. We find that in sharp
contrast to the reconstructed network, the ensemble
mean BC sequence is highly correlated to the degree
sequence, and does not display the backbone structures
observed in the reconstructed climate network (fig. 5(a)).
Based on this evidence we reject the null hypothesis that
the climate network is random and conclude, that the
backbone is unlikely to be a trivial consequence of the
degree sequence.
An alternative is to test the statistical robustness on

the time series level and to develop the null hypothe-
sis that the time series of the SAT data set are pair-
wise independent. Specifically, we generate 100 twin surro-
gates from the original time series at each grid point.
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Compared to shuffled time series or Fourier surrogates,
twin surrogates yield a higher test power since they
approximately conserve all linear and nonlinear proper-
ties of the original single time series. We then construct
an ensemble of 100 networks from the resulting surro-
gate data sets, again fixing the edge density at ρ= 0.005,
and compute the ensemble mean degree and between-
ness sequences. While interestingly, the ensemble mean
degree sequence closely resembles the degree sequence of
the climate network, the ensemble mean BC sequence
is again highly correlated to the ensemble mean degree
sequence and contains no backbone structures (fig. 5(b)).
Based on these observations, we reject the null hypothesis
that the time series of the SAT data set are pairwise inde-
pendent and infer, that the backbone indeed characterizes
the intrinsic complex topology of dynamical interrelation-
ships. We have performed these statistical tests for both
the reanalysis and model climate networks and came to
the same conclusions.

Conclusions and outlook. – In summary, using
mutual information from nonlinear time series analysis
and betweenness from complex network theory, we have
uncovered novel pathways of global energy and dynamical
information flow in the climate system, that we call
the backbone of the climate network. Two conceptually
independent types of tests reveal that the backbone does
not arise by chance and is not a trivial consequence of
the degree centrality sequence studied in previous works
on climate networks, but on the contrary represents a
statistically significant feature of the underlying SAT
data set. Surface ocean currents appear to play a major
role in the energy and information transfer and hence
in the dynamical stabilization of the climate system in
the long-term mean (140 years for the HadCM3 model
run and 60 years for the reanalysis data). We observe
similar backbone structures in AOGCM model output
and reanalysis data giving confidence that the backbone
is not a model artifact. It is important to realize that
our complex network approach is an essential ingredient
in the discovery of the backbone. The main advantage
of betweenness is that it takes into account the global
network topology of pairwise interrelationships between
regions. However, the classical linear methods (PCA, SSA,
etc. [10]) widely applied to disclose teleconnection patterns
in climatology use information about next neighbors at
each grid point, and are therefore only local within the
complex network framework. Our method is promising to
next study the impact of extreme events such as strong
El Niños, extreme Monsoons or volcanic eruptions on the
topology of climate networks. In the future it will thereby
allow us to obtain new insights into the individual local
signature of changes in the energy and information flow
structure and stability of the climate system. Our method
may also be valuable to illuminate differences in the
backbone structure of different climate states in Earth’s
history, e.g., during glacial and interglacial episodes, and

to assess the impact of global warming on the stability
of the climate system from a different perspective. More
generally, we emphasize that the methodology introduced
in this letter is universal in the sense, that it can be applied
to study the structure of energy, matter and information
flow within any spatially extended dynamical system.
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