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Abstract. Network theory provides various tools for investigating the structural or functional topology of
many complex systems found in nature, technology and society. Nevertheless, it has recently been realised
that a considerable number of systems of interest should be treated, more appropriately, as interacting
networks or networks of networks. Here we introduce a novel graph-theoretical framework for studying
the interaction structure between subnetworks embedded within a complex network of networks. This
framework allows us to quantify the structural role of single vertices or whole subnetworks with respect
to the interaction of a pair of subnetworks on local, mesoscopic and global topological scales. Climate
networks have recently been shown to be a powerful tool for the analysis of climatological data. Applying
the general framework for studying interacting networks, we introduce coupled climate subnetworks to
represent and investigate the topology of statistical relationships between the fields of distinct climatological
variables. Using coupled climate subnetworks to investigate the terrestrial atmosphere’s three-dimensional
geopotential height field uncovers known as well as interesting novel features of the atmosphere’s vertical
stratification and general circulation. Specifically, the new measure “cross-betweenness” identifies regions
which are particularly important for mediating vertical wind field interactions. The promising results
obtained by following the coupled climate subnetwork approach present a first step towards an improved
understanding of the Earth system and its complex interacting components from a network perspective.

1 Introduction

Complex networks are recognised as a structurally sim-
ple, yet powerful representation of the manifold systems
of intricately interacting elements found in nature, tech-
nology and human society [1–3]. Drawing on ideas from
mathematical graph theory and statistical physics, com-
plex network theory allows a detailed and quantitative
investigation of the interaction topology of networked sys-
tems [4] as well as exploring the interplay between network
structure and dynamics on the interacting elements [5].

Most studies have so far concentrated on networks
where vertices represent single elements or subsystems,
and edges indicate interactions or relationships between
vertices. However, it has recently been realised that a con-
siderably large class of systems of interest warrants a more
natural representation as interacting networks or networks
of networks for an appropriate description of their in-
teraction structure (Fig. 1). Notable examples are repre-
sentations of the mammalian cortex, where cortical areas
form complex subnetworks that are themselves linked via
a complex network topology [6,7], systems of interacting
populations of heterogeneous oscillators [8,9], or mutually
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interdependent infrastructure networks [10,11] such as the
power grid and electricity consuming communication net-
works [12]. More generally, and particularly if the system’s
representation as an interacting network is a less obvious
choice than for the aforementioned examples, networks
with a pronounced community structure may be viewed as
interacting networks, where subnetworks are constituted
by communities or clusters as identified by some com-
munity detection algorithm [13]. A related but distinct
concept is presented by layered networks [14–16], where
essentially different sets of edges (layers) are considered
connecting the same substrate of vertices, e.g., describing
a two-layered transportation network with roads forming
a layer of physical connections between locations and a
superposed layer of virtual connections induced by actual
pathways of traffic flow on the physical layer.

Recently, climate networks representing the statisti-
cal similarity structure of a spatio-temporally resolved cli-
matological field were successfully employed for revealing
novel aspects of climate dynamics in reanalysis data sets
and in the results of global climate models [17–24]. These
findings include among others insights into the effect of the
El-Niño southern oscillation (ENSO) on the global correla-
tion structure of several climatological observables [22,24]
as well as the detection of a backbone of significantly
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Fig. 1. Systems of interacting networks or networks of net-
works are a natural representation of many systems found in
nature, technology and society. The partition into interacting
subnetworks (indicated by vertex symbols of different shape) is
either naturally induced by the considered problem, e.g., con-
sider interdependent infrastructures [10–12] or cortical areas of
the mammalian brain [6,7], or may be generated by a commu-
nity detection algorithm [13]. Such a system is characterised
by dependencies within subnetworks (internal edges, continu-
ous lines) as well as interactions between different subnetworks
(cross edges, dashed lines).

increased matter and energy flow in the global surface air
temperature field [17,18]. Now understanding the complex
interactions between different domains of the Earth sys-
tem, which may themselves be viewed as complex dynami-
cal systems, e.g., the atmosphere, hydrosphere, cryosphere
and biosphere, remains a great challenge for modern sci-
ence [25]. The urge to make progress in this field is par-
ticularly pressing as substantial and mutually interact-
ing components of the Earth system (tipping elements),
such as the Indian Monsoon and ENSO, may soon pass
a bifurcation point (tipping point) due to global climate
change and consequently experience abrupt and possibly
irreversible transitions in their dynamics and function [26].
Mapping the complex interdependency structure of sub-
systems, components or processes of the Earth system to
a network of interacting networks provides a natural, sim-
plified and condensed mathematical representation. This
structure could in turn be harnessed for generating new
insights by graph-theoretical analysis and, hence, foster-
ing an improved understanding of the Earth system’s vul-
nerability to perturbations like anthropogenic emissions
of greenhouse gases [27]. As a first step in this direction,
in this work we develop a novel approach termed coupled
climate subnetwork analysis for representing and study-
ing the statistical relationships between several fields of
climatological observables and apply it to investigate the

atmosphere’s vertical dynamical structure and general cir-
culation [28,29] from a network perspective.

So far research on interacting networks has focussed
on global properties of these systems, e.g., percolation
thresholds [12]. However, when dealing with networks of
networks it is of major interest to determine in detail the
importance and role of single vertices for the interaction
or communication between different subnetworks as well
as to characterise their mutual interaction topology, for
example for studying the vulnerability of coupled and in-
terdependent networked systems to random perturbations
or targeted attacks. Here we propose a general and novel
framework that allows to quantitatively investigate the
interaction structure of networks of networks on different
topological scales. We derive graph-theoretical measures
that allow to answer questions like: does a vertex have a
large direct influence on and/or is it an efficient transmit-
ter of information to a specific subnetwork? Which amount
of control does a vertex have on the interaction between
two subnetworks? Are two subnetworks topologically well
separated or tightly intertwined and is their interaction
structure well organised or random? The methodology in-
troduced in this work therefore creates a new setting for
a detailed graph-theoretical assessment of the functional
roles of vertices within complex networks of networks, e.g.,
integration or segregation of information in corticocortical
networks of cats or macaque monkeys [30,31].

After introducing measures and related theoretical
considerations for characterising the topology of interact-
ing networks in Section 2, we employ this framework in
Section 3 for studying the atmosphere’s vertical dynamical
structure within the context of climate network analysis.
Conclusions are drawn in Section 4.

2 Theory: the topology of interacting
networks

Consider a network G = (V, E), where V = {1, .., N} is a
set of vertices or elements and E a set of edges or inter-
actions with N = |V |. As we wish to study a network of
interacting subnetworks, we consider a decomposition of
the vertex set V into disjoint sets Vi such that ∪iVi = V
and Vi ∩ Vj = ∅, ∀i �= j, where the number of vertices in
subset Vi is Ni = |Vi|. Similarly, the edge set E is de-
composed into sets Eii containing edges between vertices
inside Vi and sets Eij of edges connecting vertices from Vi

and Vj , i.e., ∪ijEij = E with Eij ∩Ekl = ∅, ∀(i, j) �= (k, l).
In other words, the mutual interactions between subnet-
works Gi = (Vi, Eii) (Gi is the induced subgraph of Vi)
are described by the edge sets Eij for i �= j. For simplicity
we restrict ourselves to undirected and unweighted sim-
ple graphs, since the generalisation of the concepts and
measures introduced below is straightforward. This type
of network is conveniently represented by the symmet-
ric adjacency matrix Apq with Apq = 1 if {p, q} ∈ E and
Apq = 0 otherwise. In this work, indices i, j, k, l always de-
note subnetworks while v, w, p, q designate single vertices.

In the following we define several local as well as
global network measures to quantify and investigate the
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interaction topology of networks of networks on different
topological scales. Here, local network measures assign a
real number to a vertex v ∈ Vi in relation to (a generally
different) subnetwork Gj , or to any other vertex w ∈ V
depending on two subnetworks Gi, Gj . They are inspired
by the “trinity” of classical and frequently used central-
ity measures degree, closeness and betweenness [2,3,32],
as well as the local clustering coefficient [33], and ac-
cordingly quantify direct influence on Gj (cross-degree,
Eq. (1)), local organisation of interdependency with Gj

(local cross-clustering, Eq. (3)), efficiency of interaction
with Gj (cross-closeness, Eq. (5)) and the control over
communication between Gi and Gj (cross-betweenness,
Eq. (7)), respectively. The global network measures we
introduce assign a real number to a pair of subnetworks
(Gi, Gj). They are derived from the well established mea-
sures edge density, global clustering coefficient and av-
erage path length [33]. These global network measures
quantify various overall aspects of the interaction be-
tween two subnetworks such as its degree of organisation
(global cross-clustering coefficient and cross-transitivity,
Eqs. (10), (11)), efficiency and speed of information trans-
fer (cross-average path length, Eq. (12)) or their mutual
interconnectivity (cross-edge density, Eq. (9)).

Along these lines, similar generalisations of other lo-
cal and global network properties (like local random
walk betweenness or global efficiency among many oth-
ers [1–3]) may be derived to quantify additional nuances
of the topology of interacting networks. Adaptations for
directed and edge- or vertex-weighted networks [34] are
also straightforward to deduce. Similarly it is possible on
the basis of our proposed framework to design measures to
take into account different qualities or functions of vertices
and edges within or between subnetworks, e.g., the addi-
tional constraint that the functioning of vertices v ∈ Vi

depends on the functioning of vertices v′ ∈ Vj studied by
Buldyrev et al. [12]. The selection of measures presented
here was chosen to be as concise as possible, while at the
same time representing all classes of commonly used net-
work quantifiers.

In the following definitions, we always assume v ∈ Vi if
not indicated otherwise. The formulae explicitely account
for the general case i �= j but can be, nevertheless, eas-
ily modified to suit the special case i = j. Furthermore,
the term cross generally relates to the interaction between
subnetworks Gi, Gj , whereas internal refers to the struc-
ture within a single subnetwork.

2.1 Local measures

Cross-degree centrality

kij
v gives the number of neighbours of the vertex v within

subnetwork Gj ,

kij
v = kj

v =
∑

q∈Vj

Avq , v ∈ Vi. (1)

This measure thus captures the importance of v for the
interaction or communication between two subnetworks

Fig. 2. The local cross-clustering coefficient Cij
v is the prob-

ability that two randomly drawn neighbours of vertex v from
subnetwork Gj are neighbours themselves, where v belongs to
subnetwork Gi.

Gi, Gj in terms of the number of direct connections it
projects between Gi and Gj . For brevity, we will in the
following suppress the somewhat redundant index i when-
ever possible, e.g., write kj

v instead of kij
v .

The standard degree centrality kv considering the full
network G can be obtained by summing up the contribu-
tions from all subnetworks:

kv =
∑

j

kj
v. (2)

Local cross-clustering coefficient

Cij
v estimates the probability that two randomly drawn

neighbours of v from subnetwork Gj are also neighbours
(Fig. 2),

Cij
v = Cj

v =
1

kj
v(kj

v − 1)

∑

p�=q∈Vj

AvpApqAqv. (3)

For all vertices v∗ with kj
v∗ ∈ {0, 1} we set Cj

v∗ = 0. Cj
v

quantifies the tendency of vertices to form clusters span-
ning two subnetworks and therefore contains important
information on the interaction structure between them.
Assuming no correlations between the occurrence of edges
within Gj and between Gi and Gj (described by the
sets Ejj and Eij , respectively) the expectation value for
Cj

v is the internal edge density of subnetwork Gj , i.e.,〈
Cj

v

〉
= ρj , ∀v, where ρj = 2|Ejj |/(Nj(Nj − 1)). This lack

of correlations would arise if edges in Eij were distributed
randomly and independently between subnetworks Gi and
Gj . Hence, Cj

v � ρj or Cj
v 	 ρj indicates significant (anti-)

correlations in the connectivity between both subnetworks
pointing at design principles or details of growth processes
depending on the specific application (e.g., see Sect. 3.3).

Compared to the other local measures introduced in
this section, Cj

v has a less direct relationship with the
standard local clustering coefficient Cv [2], since the con-
tributions from triangles containing vertices from three
different subnetworks also have to be taken into account
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(second summand in Eq. (4)),

Cv =
1

kv(kv − 1)

×

⎛

⎝
∑

j

kj
v(kj

v − 1)Cj
v +

∑

k �=l�=i

∑

p∈Vk,q∈Vl

AvpApqAqv

⎞

⎠ ,

(4)

where again this holds only if kv > 1.

Cross-closeness centrality

cij
v measures the topological closeness of v to subnetwork

Gj along shortest paths,

cij
v = cj

v =
Nj∑

q∈Vj
dvq

, (5)

where dvq is the shortest path length between vertices v
and q. If no path exists, i.e., the vertices are not mutually
reachable, dvq = N −1 is set as an upper bound, since this
is the longest possible path length in the considered net-
work. It is important to note that for generality, we do not
restrict paths to subnetworks Gi, Gj or a particular order
of vertices as in earlier works [35], which might however
be appropriate depending on the specific application. In
contrast, the shortest paths analysed here and below may
contain any vertices w ∈ V in any order depending on the
topology of the full graph G.

Cross-closeness therefore quantifies the efficiency of in-
teraction between a particular vertex and a specific sub-
network. A vertex with high cross-closeness is likely to be
important for the fast exchange of information with a cer-
tain subnetwork, even if it does not have a large number of
direct neighbours in that subnetwork or a high closeness
centrality with respect to the whole network.

The standard closeness centrality cv [32] can be ob-
tained from the cj

v as

cv =
N − 1

∑
j Nj

(
cj
v

)−1 . (6)

Cross-betweenness centrality

For any vertex w ∈ V , cross-betweenness centrality
bij
w indicates its role for mediating or controlling in-

teractions/communication between two subnetworks Gi

and Gj ,

bij
w =

∑

p∈Vi,q∈Vj ;p,q �=w

σpq(w)
σpq

(7)

= bji
w ,

where σpq gives the total number of shortest paths from p
to q and σpq(w) counts the number of shortest paths
between p and q that include w [32,36]. While a ver-
tex with high cross-degree (relational hub) may function

as a robust transmitter between two subnetworks, its
functional redundancy for communication is evaluated by
cross-betweenness centrality. E.g., a relational hub with
high cross-betweenness is more vulnerable to attack or
failure with respect to the interaction of two subnetworks
than another one with low cross-betweenness and, hence,
high redundancy.

The standard betweenness centrality bw [32] of the full
network is obtained by summing up the contributions from
all pairs of subnetworks,

bw =
∑

ij

bij
w . (8)

In this sense, cross-betweenness centrality can be seen as a
decomposition of the standard betweenness centrality with
respect to a certain partition of the full network. Cross-
betweenness is a generalisation of the measure Q2 defined
by Flom et al. that is restricted to networks consisting of
only two different sorts of vertices or two subnetworks in
our terminology [35,36].

2.2 Global measures

Cross-edge density

ρij measures the density of connections between distinct
subnetworks Gi and Gj ,

ρij =
|Eij |
NiNj

(9)

=

〈
kj

v

〉
v∈Vi

Nj

= ρji.

Two subnetworks can be considered to be well sepa-
rated topologically if their internal edge densities ρi, ρj

are clearly larger than their cross-edge density, i.e., ρij 	
ρi, ρj . More generally, subnetworks form communities of
the full network [13] if this inequality holds for all pairs of
subnetworks. In other words, in this situation the partition
of the full network G induced by the subnetworks Gi would
give rise to a high modularity [37]. It should be stressed,
however, that there exists a multitude of other definitions
of communities [13]. Our general framework does not re-
quire the chosen partition to be consistent with any such
definition as long as it allows the resulting cross-network
measures to be readily interpretable.

Global cross-clustering coefficient

Cij is an estimate of the probability of vertices from sub-
network Gi to have mutually connected neighbours within
subnetwork Gj ,

Cij =
〈
Cij

v

〉
v∈Vi

(10)

=
1
Ni

∑

v∈Vi,k
j
v>1

∑
p�=q∈Vj

AvpApqAqv∑
p�=q∈Vj

AvpAvq
.
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It is important to note that in contrast to cross-edge den-
sity and cross-average path length the cross-clustering co-
efficient is not a symmetric property of two subnetworks,
i.e., Cij �= Cji. As was shown above, we expect Cij = O(ρj)
if the interaction structure of subnetworks Gi and Gj is
random, i.e., cross edges are distributed randomly and in-
dependently between the two subnetworks. In contrast,
an organised interdependence would induce Cij � ρj or
Cij 	 ρj .

Cross-transitivity

Tij is the probability that two vertices in subnetwork Gj

are connected if they have a common neighbour in sub-
network Gi,

Tij =

∑
v∈Vi;p�=q∈Vj

AvpApqAqv∑
v∈Vi;p�=q∈Vj

AvpAvq
. (11)

Here also Tij �= Tji. As the global cross-clustering coef-
ficient Cij , Tij is a measure of the degree of organisation
of the subnetworks’ topological interdependence. Analo-
gous to the standard version of transitivity [2], Tij tends
to weigh contributions of vertices in Gi with low cross-
degree kj

v less heavily than Cij . From another point of
view, in the average of equation (11) edges have equal
weights, while equation (10) has the same property with
respect to vertices. This peculiarity has to be born in mind
when interpreting the values of Tij and Cij for general
complex networks of networks. Given a fully random in-
terconnectivity structure, the expectation value for cross-
transitivity is 〈Tij〉 = ρj .

Cross-average path length

Lij measures the topological closeness of two subnetworks
Gi and Gj ,

Lij =
1

NiNj − Mij

∑

v∈Vi,q∈Vj

dvq (12)

= Lji,

where Mij is the number of pairs (v ∈ Vi, q ∈ Vj) which
are not mutually reachable. Hence, Lij measures the av-
erage length of existing shortest paths between subnet-
works Gi and Gj . Lij can be interpreted as a measure
of the efficiency of interaction between two subnetworks.
Subnetworks with low Lij are closely interwoven and are
likely to show a high degree of functional interdependence,
while those with high Lij are topologically more separated
and likely to be dynamically and functionally more inde-
pendent of each other. If Mij = 0, Lij is related to the
cross-closeness centralities cij

v via

Lij =
1
Ni

∑

v∈Vi

(
cij
v

)−1
. (13)

3 Application: analysing the vertical
dynamical structure of the Earth’s
atmosphere

Climatologists are interested in studying the correlation
structure of climatological field variables in order to find
spatial as well as temporal patterns accounting for a large
fraction of the field’s variance, commonly relying on es-
tablished linear methods such as principal component
analysis (termed empirical orthogonal functional analy-
sis in climatological parlance) or singular spectrum analy-
sis [38–41]. Recently, complex climate networks have been
successfully used to analyse single fields of climate ob-
servables combining methods from nonlinear time series
analysis and network theory [17–24].

The formerly mentioned classical approach has been
generalised to find coupled patterns in climate data in-
vestigating the correlation structure between fields of dif-
ferent climatological observables using techniques such as
canonical correlation analysis or singular value decomposi-
tion of the covariance matrix [42]. In analogy to the study
of coupled patterns, here for the first time we expand the
climate network approach to analyse the dynamical inter-
relationships between two different climatological fields by
constructing coupled climate subnetworks and investigat-
ing them within the interacting networks framework in-
troduced above. In other words, the correlation structure
within and between two sets of discrete field observables
Xi(t), Yj(t) is mapped to a complex coupled climate sub-
network (Fig. 3), where i and j are spatial indices and t
denotes time.

In order to justify treating a coupled climate sub-
network as a network of networks, an ab initio phys-
ical separation of the climatological fields is neces-
sary regarding processes responsible for internal coupling
within a single field and those mediating interactions
between both fields, as is elaborated in the following.
The Earth’s quasi-spherical shape and almost homoge-
neous mass distribution result in a hydrostatic equilib-
rium in first-order approximation, implying a stable iso-
baric quasi-horizontal stratification and therefore a strong
buoyancy constraint [43]. Local heating of the Earth’s sur-
face and atmosphere due to temporally and spatially vary-
ing solar radiation induces minor disturbances of the sys-
tem, which give rise to weather variability and are propa-
gated by advection, diffusion (dominantly turbulent in the
homosphere) and convection processes. Convection pro-
cesses lead to vertical movement resulting in pressure gra-
dients which are balanced by quasi-horizontal geostrophic
winds along isobares. An important mechanism is slant
convection arising as an adjustment of baroclinic instabil-
ities [44].

Geopotential height Z(ϑ, φ, h) is a vertical coordinate
referenced to the Earth’s mean sea level which takes
into account the variation of gravitational acceleration
g(ϑ, φ, h) with latitude ϑ, longitude φ and geometrical
height h. It is defined as

Z(ϑ, φ, h) =
1
g0

∫ h

0

g(ϑ, φ, z)dz, (14)
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Fig. 3. Illustration of a coupled climate subnetwork as it is
constructed in this work, where V1 denotes the set of vertices
in the near ground subnetwork and Vi that of another isobaric
surface higher up in the atmosphere. E11, Eii are sets of inter-
nal edges of the two isobaric surfaces or subnetworks describing
the statistical relationships within each isobaric surface, while
E1i contains information on their mutual statistical interde-
pendencies.

where g0 denotes the standard gravitational acceleration
at mean sea level [43]. Z(ϑ, φ, h) is approximately equiv-
alent to geometrical height h within the homosphere, i.e.,
the lower portion of the atmosphere we consider in this
work. The geopotential height Z(ϑ, φ, P ) of a certain pres-
sure level P is defined as the geopotential height neces-
sary to reach the given pressure P . In meteorology and
climatology, the field Z(ϑ, φ, P ) is frequently used as an
equivalent and convenient representation of the three-
dimensional atmospheric pressure field P (ϑ, φ, Z). There-
fore the discretised and vertically resolved geopotential
height field Zi

v(t) sampled at predefined points v on iso-
baric surfaces i at pressure Pi captures the dynamics of
both the geostrophic wind field as well as convection pro-
cesses and, hence, reflects global weather and climate dy-
namics to a good approximation [43]. Given the distinct
physical processes behind vertical and quasi-horizontal at-
mospheric dynamics described above, it is hence feasi-
ble to apply the interacting networks approach, treating
the induced subgraphs of vertices lying on the same iso-
baric surface i as distinct subnetworks Gi. In this paper
we specifically focus on the interaction structure between
near ground and upper level atmospheric dynamics, which
is particularly interesting as a large portion of the solar
forcing driving atmospheric dynamics takes place on the
Earth’s surface (Fig. 3).

To better understand our coupled climate subnetwork
approach, one should be aware of the strong analogy
existing between the concepts of climate networks and
functional brain networks studied in neuroscience and
medicine [6,7,30,31,45]. Both types of networks describe
statistical similarity relationships between spatially em-
bedded time series using the same methods of time series
analysis, but relying on distinct data sources, i.e., the cli-
mate system and the mammalian brain. Now there exist
two fundamentally different types of networks: (i) struc-
tural (or anatomical) networks, on the one hand, reflect
the topological structure of existing ties between objects
(e.g., computers, neurons, columns of neurons), referring
to either physical connections (e.g., internet, power grids,

neuronal networks) or abstract relations (e.g., world wide
web, social networks, citation networks). (ii) Functional
networks, on the other hand, including functional brain
networks and complex climate networks, are extracted
from an underlying system by detecting and assessing sim-
ilarities in the dynamical behaviour of its components. In
other words, structural networks represent a priori knowl-
edge on a system’s internal structure on a certain level
of abstraction, whereas functional networks are inferred
solely from the measured or simulated dynamics of sub-
systems, usually without including any additional infor-
mation. Hence, in contrast to structural networks, the re-
sulting topological interconnections in functional networks
do not directly allow to draw conclusions on a causal in-
terrelationship between vertices. When constructed and
compared for the same system, e.g. a neuronal network,
both types of networks will usually not be identical. This
implies that special emphasis has to be put on physical ar-
guments when interpreting topological features of climate
networks. A further noteworthy duality exists between
spatial similarity networks based on fields of time series
such as the climate networks discussed above, and tempo-
ral similarity networks, e.g., recurrence networks [46–48],
representing a single time series.

3.1 Data

To construct coupled climate subnetworks capturing
longer-term dynamics of the geostrophic wind field as
well as large-scale convection processes, we rely on the
global monthly averaged and vertically resolved atmo-
spheric geopotential height field covering the troposphere
and the lower stratosphere. We use Reanalysis 1 data pro-
vided by the National Center for Environmental Predic-
tion/National Center for Atmospheric Research (NCEP/-
NCAR) [49]. For each of the 17 isobaric surfaces Pi the
NCEP/NCAR data is given on an equally spaced spher-
ical grid with a latitudinal and longitudinal resolution of
2.5◦×2.5◦, resulting in 10,226 grid points. Using this type
of grid for network construction would induce biases in the
statistical properties of climate networks, since the area
covered by each grid point is not uniform but decreases
towards the poles like the cosine of latitude [23,34]. To
avoid these effects, we choose to project the data to an
icosahedral grid [50] of Ni = 2, 562 time series Zi

v(t) with
v ∈ {1, . . . , Ni} for each isobaric surface i, respectively, at
pressure Pi using the conservative interpolation scheme
described in [51]. Each isobaric surface i may be associ-
ated to an average geopotential height

Zi =
〈
Zi

v(t)
〉

v,t
(15)

by averaging over time t and all grid points v contained
within this level (Tab. 1). The time series Zi

v(t) contain
734 monthly averaged data points from January 1948 until
February 2009.

Relying on the icosahedral grid, which is used by the
German Weather Service for its operational global weather
forecast model global modell extended (GME) and referred
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Table 1. Pressure Pi and associated mean geopotential height
Zi (Eq. (15)) for each isobaric surface i in the NCEP/NCAR
Reanalysis 1 reconstruction of the geopotential height field.

i Pi [mbar] Zi [km]

1 1000 0.1
2 925 0.8
3 850 1.5
4 700 3.0
5 600 4.3
6 500 5.7
7 400 7.3
8 300 9.3
9 250 10.6
10 200 12.0
11 150 13.8
12 100 16.3
13 70 18.5
14 50 20.5
15 30 23.8
16 20 26.4
17 10 30.9

to as “triangular grid” [52], guarantees nearly uniform grid
cell areas within each isobaric surface i. The differences in
grid cell area between different isobaric surfaces due to
their varying distance from the Earth’s surface are neg-
ligible since the maximum vertical separation of isobaric
surfaces (≈30 km, see Tab. 1) is much smaller than the
Earth’s mean radius a ≈ 6, 370km.

As a final step of preprocessing the data, we calculate
climatological anomaly time series Ẑi

v(t) by phase averag-
ing (see [18]) to remove the leading order effect of the an-
nual cycle from the geopotential height time series Zi

v(t).
This helps to avoid spurious correlations solely due to the
solar forcing common to all time series.

3.2 Network construction

We now construct a sequence of pairwise coupled climate
subnetworks based on statistical interrelationships within
the three-dimensional geopotential height anomaly field
by using the linear Pearson correlation at zero lag. As
was shown in [18], linear correlation measures are suf-
ficient for a first overview study like the present work,
because they capture the great majority of statistical in-
terrelationships within fields of smooth (non-intermittent)
climatological variables like temperature or geopoten-
tial height. The so obtained networks describe both the
intrinsic structure of a single isobaric surface as well as
the interaction structure between two isobaric surfaces,
in other words comprising horizontal as well as vertical
interdependencies of the spatially embedded time series.
First the Ni, Nj = 2, 562 time series of two isobaric sur-
faces i, j are relabelled using indices p, q ∈ {1, . . . , N},
N = Ni + Nj, Ẑi

v(t), Ẑ
j
v(t) → Ẑp(t), Ẑq(t), where the fully

coupled climate subnetworks contain N = 5, 124 vertices.
The anomaly time series Ẑp,q(t) are identified with vertices

p, q of the coupled climate subnetwork and subsequently
collected in sets Vi, Vj based on their native isobaric sur-
face. The classic Pearson correlation between any pair of{
Ẑp(t), Ẑq(t)

}
is then given by

P i,j
pq =

〈(
Ẑp(t) − μp

)(
Ẑq(t) − μq

)〉

t

σpσq
, (16)

where μp,q and σp,q are the mean and standard deviation
of the Ẑp,q(t), respectively. Edges {p, q} are introduced
into the coupled climate subnetwork if the absolute value
of Pearson correlation |P i,j

pq | at zero lag between both time
series Ẑp(t) and Ẑq(t) exceeds a certain threshold value
0 ≤ T ≤ 1. The threshold should be carefully chosen
to ensure that only statistically significant and reason-
ably strong correlations are included in the network [18].
Because an optimal value of T is neither easy to define
nor to determine (it would even be possible to deter-
mine a threshold Tpq for each pair of time series p, q sepa-
rately), we will present results for various thresholds below
(Sect. 3.3). Furthermore it would be feasible to avoid the
choice of a threshold altogether by including a function of
the correlation measure wi,j

pq = f(P i,j
pq ) into the network

analysis as edge weights wi,j
pq . However, we do not follow

this research avenue here as it introduces as a new compli-
cation the choice of a meaningful transfer function f for
mapping correlations to edge weights depending on the
interpretation of a specific network measure. In contrast,
this work focusses on the topology of statistical interre-
lationships between different isobaric surfaces on the net-
work level. The consideration of edge weights will be an
interesting subject of future work.

Finally, the coupled climate subnetworks are com-
pletely described by the adjacency matrices

Ai,j
pq = Θ

(∣∣P i,j
pq

∣∣ − T
)
− δpq, (17)

where Θ(·) is the Heaviside function and Kronecker’s
delta δpq indicates that artificial self-loops are not con-
sidered. The subnetworks Gi, Gj representing the corre-
lation structure within each isobaric surface i, j are the
induced subgraphs of the sets Vi, Vj embedded within the
coupled climate subnetwork Gi,j described by the adja-
cency matrix Ai,j

pq . In the following, local as well as global
(cross-)network measures mij

v , mij will be calculated from
the coupled climate subnetwork Gi,j consisting of two iso-
baric subnetworks Gi and Gj and their interaction struc-
ture Eij , i.e., Gi,j = (Vi ∪ Vj , Eii ∪ Ejj ∪ Eij).

3.3 Results

Global measures

The available data describes the dynamics of geopotential
height in the lower homosphere, encompassing the tropo-
sphere and lower stratosphere, where most atmospheric
dynamical processes relevant for the Earth’s climate sys-
tem are concentrated to [43]. In the following we will in-
vestigate which aspects of atmospheric dynamics can be
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Fig. 4. (Color online) (A) Internal edge density ρi of all subnetworks on isobaric surfaces i, (B) cross-edge density ρ1i between
the surface level 1 and all other isobaric surfaces i of average height Zi, (C) the ratio ρ1/ρ1i and (D) the ratio ρi/ρ1i in the coupled
geopotential height climate networks for various thresholds T . Note the inversions of cross-edge density at Z ≈ 1−3, 12, 16 and
26 km becoming increasingly pronounced for decreasing threshold T .

revealed by analysing the sequence of coupled climate sub-
networks G1,i, i = 1, ..., 17.

It is pivotal to be aware that for functional networks
constructed from spatio-temporal data, such as the cou-
pled climate subnetworks studied here, network structure
is subject to statistical uncertainties [53]. One consequence
is that average path length and global clustering coef-
ficient cannot be considered as useful order parameters
for network classification [45]. Both are biased by spu-
rious or missing links due to the network construction
algorithm and local correlations between spatially close
observations. Particularly, this implies that it is not mean-
ingful to classify functional networks as small-world net-
works [33], Erdős-Rényi type random networks or grid-like
regular networks, as is common practice for other types
of networks [2,3]. Since the corresponding arguments of
Bialonski et al. [45] also hold for the modified clustering
coefficients, transitivities and average path lengths defined
in Section 2, we in the following do not consider the ab-
solute values of these measures. In contrast, here we are
solely interested in their relative changes conveying infor-
mation on the varying interaction structure within and
between different isobaric surfaces of the atmosphere.

Our first and fundamental observation is that the
cross-edge density ρ1i (Fig. 4B) between the near-surface
and all other isobaric surfaces i is always smaller than

and well separated from the internal edge density of the
upper isobaric subnetwork ρi (Fig. 4A) for all considered
thresholds T . Moreover, the ratio of the edge densities
ρi/ρ1i and, hence, the physical separation of the underly-
ing dynamics is increasing with height Zi (Fig. 4D). Ap-
proximately the same holds for the internal edge density
ρ1 of the near-surface subnetwork which is considerably
larger than ρ1i for most Zi and T (Fig. 4C). This ob-
servation reflects topologically the dynamical separation
of atmospheric processes within and between isobaric sur-
faces i, respectively, that led to identifying them with sub-
networks in the first place (see the introduction to Sect. 3).
Nevertheless, ρ1 can be slightly smaller than the cross-
edge density ρ1i, particularly close to the two pronounced
minima of the ratio ρ1/ρ1i (the overall minimum value is
mini,T ρ1/ρ1i ≈ 0.7, see Fig. 4C). This finding, however,
does not challenge the applicability of our method as our
framework does not require that subnetworks constitute
communities of the full network (Sect. 2.2).

The cross-edge density ρ1i displays prominent ex-
trema with varying height Zi of the isobaric surface i,
which become more pronounced for decreasing thresh-
old T (Fig. 4B). Two maxima of ρ1i are located at 1−3 km
and 16 km, while a minimum is found at 12 km. A much
more weakly developed inversion of cross-edge density ρ1i

occurs at 26 km, but it is only visible for small T . These
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Fig. 5. (Color online) The cross-average path length L1i be-
tween the surface level 1 and all other isobaric surfaces i of
average height Zi in the coupled geopotential height climate
networks for different thresholds T . In the lower stratosphere
and for larger thresholds, L1i is not defined due to vanish-
ing cross-edge density ρ1i and, hence, the corresponding data
points are not shown. L1i shows inversions at similar height
levels as the cross-edge density ρ1i (Fig. 4), which in contrast
decrease in sharpness for decreasing threshold T .

findings indicate that correlations of large-scale quasi-
geostrophic wind dynamics are significantly increased be-
tween the near-ground and higher isobaric surfaces at
approx. 1−3 km and 16 km. The superficially similar in-
versions in internal edge density ρi with two maxima at
4−6 km, 18−24 km and a minimum at 7−11 km have to
be carefully distinguished from those of cross-edge den-
sity ρ1i (Fig. 4A). First, the geopotential height intervals
within which the respective extrema are observed for dif-
ferent T do not overlap. Second, on the one hand, re-
call that in contrast to ρ1i the internal edge density ρi

measures dynamical correlations occurring within a quasi-
horizontal isobaric surface at pressure Pi. On the other
hand, the physical processes acting within isobaric sur-
faces (geostrophic wind, planetary Rossby waves, gravity
waves) and between them (convection, turbulent mixing),
which are relevant for large scale dynamical coupling are
distinctively different.

The cross-average path length L1i between the near
ground layer and all other isobaric surfaces possesses two
minima at 3 km and 16 km as well as one maximum at
11 km (Fig. 5). In contrast to cross-edge density, small
values of L1i imply tight dynamical relationships between
two isobaric surfaces, while large values indicate a weaker
coupling. Hence, cross-average path length consistently
behaves complementarily to cross-edge density ρ1i and in-
ternal edge-density ρi, as shortest paths between two dif-
ferent subnetworks generally contain edges from both sub-
networks implying their average length to decrease with
increasing ρ1i and ρi. Interestingly, in contrast to the be-
haviour of ρ1i and ρi, the extrema in L1i are rendered
increasingly pronounced for increasing threshold T . Cross-
average path length remains sensitive to variations in the
topological closeness of two isobaric surfaces even as more
and more edges {p, q} of weaker correlation strength |Ppq|
are removed from the coupled climate subnetworks.

While the cross-network measures discussed so far are
symmetric with respect to exchanging the involved sub-
networks (see Sect. 2), the two clustering measures global
cross-clustering coefficient Cij and cross-transitivity Tij

are intrinsically directional. Hence, as for the horizontally
resolved cross-measures to be treated below, we are able
to distinguish C1i and T1i pointing “upward” from the
near ground to higher isobaric surfaces from their coun-
terparts Ci1 and Ti1 projecting “downward”. Both C1i and
T1i consistently uncover that the probability of vertices
within the near ground isobaric surface to have connected
neighbours in higher isobaric surfaces reaches local max-
ima between 3−6 km and 14−16 km, whereas a local min-
imum is assumed at 11km (Figs. 6A and 6C). For both
measures, all three inversions are only observed for low
thresholds T . It is particularly interesting to compare the
measured values of C1i and T1i with those expected for a
fully random connectivity structure between isobaric sur-
faces (see Sect. 2.2). The “upward” pointing global cross-
clustering coefficients C1i are considerably larger than the
expectations ρi (indicated by dashed lines in Fig. 6A) be-
low 15 km, and markedly smaller for average geopotential
heights above 20 km. Similarly, the “upward” projecting
cross-transitivity T1i is significantly larger than the ex-
pected values ρi for the fully random null model for all
height levels (Fig. 6C).

Compared to their counterparts the behaviour of the
“downward” projecting measures Ci1 and Ti1 is less consis-
tent. The global cross-clustering coefficient Ci1 possesses
two extrema at 3−6 km and 16−21 km, whereas the cross-
transitivity Ti1 takes local minima between 2−3 km and
14−16 km and local maxima between 12−14 km and at
24km of geopotential height (Figs. 6B and 6D). Note
that “downward” pointing cross-transitivity Ti1 behaves
complementarily to its “upward” projecting counterpart
T1i. Both clustering measures are significantly larger than
their values ρ1 expected for a fully random connectivity
structure for nearly all height levels, only above 20 km the
global cross-clustering coefficient Ci1 is consistent with the
expectation value for larger thresholds T .

In summary, the clustering measures exhibit that the
interaction topology between the near ground and higher
isobaric surfaces is not consistent with a fully random null
model, except for the lower stratosphere above 20 km. The
same holds when comparing the observed values of the
clustering measures to those expected from a more so-
phisticated null-model with fixed cross-degree sequences
but otherwise random interaction topology (results not
shown here). These findings highlight that the coupled cli-
mate subnetworks considered here have a nontrivial inter-
action topology, which is consistent with known features of
the atmosphere’s vertical dynamical structure and strati-
fication and may contain additional information on previ-
ously unknown features of the atmosphere’s general circu-
lation [28,29] (see Sect. 3.4). The large values of clustering
measures observed for most height levels can be partly
explained by spatial correlations between closely neigh-
boured time series stemming from the continuity of the
geopotential height field in conjunction with the intrinsic
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Fig. 6. (Color online) Global cross-clustering coefficients (A) C1i calculated “upward” from the surface level 1 to all other
isobaric surfaces i and (B) Ci1 defined “downward” (continuous lines), as well as cross-transitivities (C) T1i (“upward”) and (D)
Ti1 (“downward”). For comparison with the global cross-clustering coefficients 〈Cij〉 expected for a fully random connectivity
between isobaric surfaces, (A) and (B) also feature the expectation values 〈C1i〉 = ρi and 〈Ci1〉 = ρ1, respectively (dashed lines).

transitivity of the Pearson correlation coefficient Ppq used
for network construction [45,54]. Directly comparing Ci1

and Ti1 as well as C1i and T1i, respectively, furthermore
clearly reveals the bias in the global cross-clustering coeffi-
cient, which leads to generally lower values for increasing
height through weighing more strongly the contribution
of the increasing number of vertices of low cross-degree
induced by the decreasing trend in cross-edge density ρ1i

(see Sect. 2.2). Consequently, as for the standard versions
of global clustering and transitivity [2], special care has
to be taken when interpreting absolute values of global
cross-clustering and cross-transitivity. The suggested best
practice is to always consider the two measures simultane-
ously and to draw conclusions only from qualitative fea-
tures exhibited by both of them.

Local measures

For visualising the inherently three-dimensional fields of
local cross-network measures (one of the subnetwork in-
dices i, j indices being fixed as in our application) mij

v =
mij

v(ϑ,φ), where ϑ and φ denote latitude and longitude, we
choose to focus on their variation with height and latitude.
This is most appropriate as our aim is to study from a
complex network perspective aspects of the atmosphere’s
general circulation [28,29], the dominant forcing of which

is the latitudinal variation of radiative solar forcing [43].
Hence, in the following we will consider zonal averages

mij(ϑ) =
〈
mij

v(ϑ,φ)

〉

φ
(18)

along circles of constant latitude. A detailed study and
interpretation of the latitudinally and longitudinally re-
solved fields of cross-network measures will be the subject
of future work. Like the scalar measures of cross-clustering
discussed above, most local cross-network measures are
non-symmetric with respect to interchanging subnetworks
and, hence, intrinsically directional. Therefore we dis-
tinguish “upward” cross-degree centrality k1i(ϑ) from
“downward” cross-degree centrality ki1(ϑ), and “upward”
cross-closeness centrality c1i(ϑ) from “downward” cross-
closeness centrality ci1(ϑ). For brevity here we present re-
sults for representative thresholds of T = 0.4, 0.5, 0.6 only.

Cross-degree and cross-closeness centrality show a sim-
ilar structure in both directions (Figs. 7, 8, 9A–9D). Both
measures are generally increased in the tropics and po-
lar regions, whereas they take smaller values in the mid-
latitudes. We observe a pronounced asymmetry between
both hemispheres as the cross-degree and cross-closeness
centralities in the northern polar regions are significantly
larger than those above Antarctica and the surrounding
Southern Ocean in the southern hemisphere. Furthermore,
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Fig. 7. (Color online) Zonally averaged cross-degree centralities (A) k1i(ϑ) pointing “upward” from the near ground level 1 to all
other isobaric surfaces i and (B) ki1(ϑ) projecting “downward”, zonally averaged cross-closeness centralities (C) c1i(ϑ) pointing
“upward” and (D) ci1(ϑ) projecting “downward”, (E) b1i

1 (ϑ) near ground and (F) b1i
i (ϑ) upper level component of zonally

averaged cross-betweenness centrality for a threshold of T = 0.4. Panel (B) can be interpreted to show the number of cross-
edges connecting a certain volume element with the whole near ground isobaric surface, averaged along bands of approximately
equal latitude (approximately because of the geodesic grid).

a structure of increased “downward” cross-degree ki1(ϑ)
and -closeness centrality ci1(ϑ) appears above the north-
ern mid-latitudes but not above those of the southern
hemisphere (Figs. 7, 8, 9B and 9D).

Additionally considering the dependence of both local
measures on geopotential height Zi, the “upward” point-
ing cross-degree k1i(ϑ) and -closeness centralities c1i(ϑ)
possess two distinct tropical maxima centred around 1 km
and 16 km, as well as two northern polar maxima at 3 km
and 16km (Figs. 7, 8, 9A and 9C). While k1i(ϑ) de-
creases monotonously with height in the mid-latitudes and
above the polar regions of the southern hemisphere, c1i(ϑ)
maintains its bimodal structure there. The “downward”
projecting cross-degree ki1(ϑ) and -closeness centralities

ci1(ϑ) display two pronounced tropical maxima at 3 km
and 16 km, and a maximum centred around 14 km in the
northern mid-latitudes (Figs. 7, 8, 9B and 9D). Further-
more, ci1(ϑ) reveals a maximum of topological closeness to
the near ground isobaric surface at 1 km above the north-
ern polar regions, while k1i(ϑ) decreases monotonically
with height there.

It is worth noting that the observed extrema in cross-
degree are directly related to those in cross-edge den-
sity via equation (9) and extrema in cross-closeness have
an equivalent association to those of cross-average path
length (Eq. (13)). Moreover, we point out that plots of
cross-degree centrality like those presented in this work
may be used to draw conclusions on the main sources
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Fig. 8. (Color online) As Figure 7 with threshold T = 0.5.

and destinations of cross-edges without relying on full
three-dimensional visualisations of the coupled network
structure. For example, consider the region of increased
“downward” cross-degree ki1(ϑ) between 11 km and 18 km
of geopotential height above the northern mid-latitudes
(Figs. 7, 8, 9B). It implies that a considerably large num-
ber of cross-edges connect this region directly to the whole
near ground isobaric surface. We learn where exactly on
the near ground surface those cross-edges originate from
by looking at the “upward” cross-degree k1i(ϑ). It mea-
sures how many and from where on the near ground sur-
face cross-edges connect to some higher isobaric surface.
Now the regions of increased k1i(ϑ) between 11 km and
18 km above the tropics and northern polar regions im-
ply that many cross-edges originating in the tropics and
northern polar regions of the near ground surface project

to isobaric surfaces between 11 km and 18 km (Figs. 7, 8,
9A). As these are the only major structures in this range
of geopotential height, we may conclude that a significant
number of cross-edges must link the tropical and north-
ern polar near ground isobaric surface with the northern
mid-latitudes’ upper troposphere to lower stratosphere be-
tween 11 km and 18 km.

In contrast to the latter two local measures, cross-
betweenness bij

w with w ∈ Vi∪Vj is symmetric with respect
to exchanging the involved subnetworks (see Eq. (7)), but
assigns a value to vertices of both subnetworks. Therefore
we will in the following analyse zonally averaged fields of
cross-betweenness

bij
i (ϑ) =

〈
bij
w(ϑ,φ)

〉

φ,w∈Vi

(19)
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Fig. 9. (Color online) As Figure 7 with threshold T = 0.6.

for vertices taken from a specific isobaric subnetwork i. It
was shown earlier for climate networks constructed from
surface air temperature data that betweenness centrality
(Eq. (8)) yields additional information when compared to
degree (Eq. (2)) and closeness centrality (Eq. (6)) [17].
Similarly, the near ground and higher isobaric surface
components of cross-betweenness centrality b1i

1 (ϑ), b1i
i (ϑ)

reveal rich structures which are partially complementary
to those seen in the zonally averaged fields of degree and
closeness centrality (Figs. 7, 8, 9E and 9F). Both fields
highlight how frequently certain regions on the two iso-
baric surfaces are traversed by shortest paths connect-
ing the near ground to a higher isobaric surface. Now
due to our network construction procedure (Sect. 3.2),
shortest paths correspond to sequences of strongly and
significantly statistically interrelated pairs of time series
with a minimum number of intermediate steps. Hence, it

is conceivable to assume that to a first approximation a
markedly increased cross-betweenness centrality indicates
that a region is particularly important for mediating in-
teractions between two isobaric surfaces, while the con-
trary is true for regions with significantly decreased cross-
betweenness [17].

The hemispherically asymmetric near ground compo-
nent of cross-betweenness centrality b1i

1 (ϑ) reveals that
the northern subpolar regions are exceptionally impor-
tant for mediating interactions between the near ground
and all considered heights ranging from the lower tropo-
sphere across the tropopause to the lower stratosphere
(Figs. 7, 8, 9E). The near ground tropics and southern
polar regions appear only to be relevant for coupling the
near ground to isobaric surfaces in the upper troposphere
and above. In contrast, the upper surface component
of cross-betweenness b1i

i (ϑ) possesses a more pronounced
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hemispherical symmetry (Figs. 7, 8, 9F). Most notable
and stable for various thresholds T are the two tongues
of increased b1i

i (ϑ) ranging from the near ground trop-
ics to the mid-latitudes and subpolar regions in the lower
stratosphere. These structures indicate that the latitude
at which shortest paths connecting near ground and up-
per isobaric surfaces arrive in the upper surface tends
to increase towards the poles for growing geopotential
height Zi in both hemispheres. One should be aware that
the structures detected in both components of the cross-
betweenness field in the stratosphere as well as in all other
local and global measures above 20 km of geopotential
height should be treated with care. This is because only
very few edges exist between the near ground and isobaric
surfaces in these height levels (Fig. 4B) and, hence, statis-
tically expected false detections or omissions of cross-edges
are likely to induce recognisable changes in the respective
measures [45]. To quantitatively assess the effects of small
changes in the interaction topology between subnetworks,
new types of significance tests based on network null mod-
els need to be developed in future work.

After describing the results of our analysis we would
like to draw attention to the fact that the observed corre-
lations in various measures revealed by qualitatively sim-
ilar structures like the inversions at mostly three differ-
ent height levels are not necessarily a direct consequence
of the measure’s definitions (see Sect. 2), but point to a
specific type of network structure. While correlations in
different measures quantifying distinct aspects of network
topology need not be present for general network struc-
tures, they are prevalent in many different types of real-
world networks and network models [4]. Particularly, these
correlations are expected to arise in spatially embedded
functional climate (and brain) networks like the coupled
climate subnetworks considered in this work, since the in-
creased probability of spatially close vertices to be con-
nected imposes a substantial constraint on network topol-
ogy [17,45,55].

3.4 Climatological interpretation

We are now in a position to elaborate on the climatological
implications of our coupled climate subnetwork analysis.
First, recall that the coupled climate subnetworks were
constructed from monthly averaged time series of geopo-
tential height describing the dynamics of the atmosphere’s
quasi-geostrophic wind field on longer than monthly time
scales. Variability on shorter time scales, e.g., synoptic
scale weather systems, is included in the averages but does
not appear explicitly in the time series. Therefore, we can
indeed expect the coupled climate subnetworks to rep-
resent the climatological mean state of the atmosphere’s
three-dimensional correlation structure, excluding the di-
rect effects of such weather phenomena with typical life-
times of clearly less than one month.

The cross-network measures discussed in Section 3.3
reveal for a wide range of thresholds T aspects of the at-
mosphere’s stratification and, more importantly, physical
processes which couple the dynamics on different isobaric

surfaces despite the strong buoyancy constraint imposed
by vertical stratification. First it should be noted that
in accordance with physical considerations and obser-
vations, all cross-network measures consistently indicate
that most atmospheric dynamics takes place within the
troposphere with comparatively weak coupling to the su-
perjacent stratosphere [43]. Steadily increasing (decreas-
ing) from the near ground to reach a first maximum (min-
imum) at 1 km to 3 km of geopotential height, cross-edge
density ρ1i and cross-average path length L1i indicate that
the near ground and higher isobaric surfaces become dy-
namically more densely interwoven when ascending from
the planetary boundary layer below approx. 1 km into the
lower free atmosphere (Figs. 4B and 5). Bearing in mind
the spatial continuity of the geopotential height field, spa-
tially close vertices are likely to be connected and to share
common neighbours. This implies that the typical corre-
lation radius of near ground vertices to higher isobaric
surfaces and vice versa increases throughout the lower
troposphere. This observation is consistent with the in-
fluence of the Earth’s surface orography on atmospheric
flow exponentially decreasing with height in the planetary
boundary layer via the Ekman effect. Hand in hand with
the prevalence of turbulence, the formation of long-range
dynamical couplings is inhibited by this essentially fric-
tional effect. In turn, within the less turbulent free atmo-
sphere above approximately 1 km the wind field behaves
quasi-geostrophically and allows for the long-range prop-
agation of dynamical influences between the near ground
and higher altitudes [43].

Within the cross-edge density (Fig. 4B), we observe
that the first maximum shifts from approximately 4 km
to 3 km for higher thresholds. This detail can be credited
to the decreasing height of the planetary boundary layer
with latitude, the typical zone within which convection
cells form. The prominent tropical convection processes
are known to be more diffusive than those in the mid-
latitudes and, hence, yield lower correlation values. Thus
higher thresholds rather account for mid-latitude convec-
tion phenomena rejecting the relatively low correlated pro-
cesses in the tropics. The prevalence of the latter, on the
other hand, is reflected for lower thresholds.

Above approx. 3 km of geopotential height, ρ1i and
L1i decrease (increase) again until reaching a local min-
imum (maximum) between 11 km and 14 km (Figs. 4B
and 5), indicating a dominating effect of a more stable ver-
tical stratification acting to inhibit dynamical couplings
between the now vertically more separated isobaric lev-
els 1 and i. This may be understood considering that
turbulent vertical mixing is significantly less prevalent in
the free atmosphere than it is in the planetary bound-
ary layer and convection is suppressed by baroclinic ad-
justment forcing the atmosphere to interact horizontally.
The second local maximum (minimum) of ρ1i and L1i at
16km highlights that the cumulative action of tropical
penetrative convection processes (hot towers) reaching up
to this height mediates markedly increased dynamical in-
terrelationships between the near ground and isobaric sur-
faces close to the tropopause [56]. The tropical origin of
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this coupling is more readily seen in the fields of zonally
averaged cross-degree and -closeness centralities (Figs. 7–
9). When entering the stratosphere, quickly decreasing
(increasing) ρ1i and L1i indicate that influences reaching
from the near ground to these heights are strongly inhib-
ited by the dynamical barrier formed by the temperature
inversion which marks the boundary between troposphere
and stratosphere. This conclusion is further supported
by the random-like interconnectivity structure revealed
by the “downward” pointing global cross-clustering coeffi-
cient Ci1 within the stratosphere (Fig. 6B). The behaviour
of internal edge density ρi is consistent with the forego-
ing argumentation in the troposphere, its striking increase
above the tropopause reflects the spatially uniform dy-
namics of the statospheric wind field (Fig. 4A) [43].

The zonally averaged fields of cross-degree, -closeness
and -betweenness centrality uncover features of the atmo-
sphere’s general meridional circulation [28,29]. Most evi-
dent are the Hadley and polar cells which are indicated by
markedly increased values of both measures in the trop-
ics and polar regions (Figs. 7–9). Here the generally rising
motion of air above the equator and subpolar latitudes
couples surface wind dynamics to the upper troposphere,
which becomes apparent in both components of zonally
averaged cross-betweenness (Figs. 7, 8, 9E and 9F). The
surface component of cross-betweenness may also be inter-
preted to show a signature of the northern hemisphere cir-
cumpolar vortex around a typical height of approximately
5 km which is known to induce vertical air motion and,
hence, vertical dynamical coupling (Figs. 7, 8, 9E) [57].
Supporting this interpretation, a corresponding signature
is not seen in the southern hemisphere which is consistent
with the Antarctic ice shield inhibiting the formation of
a polar vortex there. Cross-degree and -closeness central-
ity also show that the height of the tropopause decreases
towards the poles by a slight poleward shift of their max-
imum values towards lower altitudes, as this dynamical
barrier strongly inhibits the propagation of signals from
the near ground to the stratosphere. The Ferrel circulation
may be involved in forming the comparatively weak dy-
namical interrelationships between the near ground south-
ern subtropics and mid-latitudes with isobaric surfaces
lying in the upper troposphere and lower stratosphere
(Figs. 7, 8, 9A and 9C). Similarly, the remarkable cou-
pling of wind dynamics within the upper troposphere and
lower stratosphere of the northern mid-latitudes with the
near ground tropics and northern polar regions might be
related to the northern Ferrel cell (Figs. 7, 8, 9B and 9D,
see also the discussion in Sect. 3.3).

3.5 Outlook

The analysis performed in this section serves as an illus-
tration of the potentials of our network-based approach
for studying statistical interrelationships between differ-
ent fields of climatological observables as well as arbitrary
data with a similar structure. It was shown that the se-
quence of coupled climate subnetworks constructed from

three-dimensional geopotential height data contains a lot
of information on known features of the atmospheric gen-
eral circulation and stratification [58]. However, partic-
ularly the measure cross-betweenness centrality is read-
ily interpretable in the context of coupled climate sub-
networks (see above), but reveals interesting structures,
which we cannot obviously relate to known features of the
atmosphere’s dynamical structure. This in turn indicates
that coupled climate subnetworks in general and cross-
betweenness centrality in particular have the potential to
uncover previously unknown features of the atmosphere’s
general circulation and may prove useful in the future to
shed light on so far open questions of atmospheric dynam-
ics [28], specifically those considering the response to cli-
mate change [26]. While it should be born in mind that the
results of our study are subject to known deficiencies and
limitations of the NCEP/NCAR Reanalysis 1 data, the
variable geopotential height we analyse here is considered
as one of the most reliable products of this reanalysis, since
it is strongly determined by observations and, hence, less
dependent on the particular model used for data assimila-
tion [49]. However, we suggest that the results generated
from several independent reanalysis data sets should be
compared if definite climatological conclusions are to be
drawn in future studies using coupled climate subnetwork
analysis.

Additional information may be extracted from the
available coupled climate subnetworks by investigating
the spatially fully resolved fields of local cross-network
measures or relying on further measures such as the lo-
cal cross-clustering coefficient (which was not shown here
for brevity). In a next step, network null models with a
randomised interaction topology could be developed and
used to assess the statistical significance of observed local
and global cross-network measures. The simplest mean-
ingful network null model of this type that was already
discussed in the context of (local) cross-clustering and
cross-transitivity (Sect. 2.2) can be constructed by fully
randomising the interaction structure between two sub-
networks while keeping the number of cross-edges fixed,
e.g., by first deleting all cross-edges and subsequently re-
distributing them randomly between the two subnetworks.
Furthermore, the network construction methodology may
be fine-tuned, e.g., by using measures for detecting non-
linear or even directional interrelationships between time
series or alternatively by including edges in the network
based on the statistical significance of their associated cor-
relation strengths.

Summarising the results of this first application of our
framework for interacting network analysis, the particu-
lar advantage of this approach is that substantial con-
clusions can be drawn by analysing the dynamical cor-
relation structure of the three-dimensional geopotential
height field alone, without considering fields of temper-
ature, moisture content or other relevant climatological
variables. Subject to future work is the application of the
interacting networks approach to fields of distinct clima-
tological observables (e.g., surface air temperature and
sea surface salinity) to further investigate the coupled
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dynamical behaviour of different components of the cli-
mate system.

4 Conclusions

In summary, we have developed a novel graph-theoretical
framework for investigating in detail the interaction topol-
ogy between pairs of subnetworks embedded within a net-
work of networks. Applying this framework to analyse
the correlation structure of a four-dimensional (spatio-
temporal) data set of the climatological variable geopoten-
tial height yielded a consistent picture of the large scale
circulation of the Earth’s atmosphere. Particularly, the
new measure cross-betweenness centrality was shown to
have the potential to reveal previously unknown features
of and to help address open questions on the atmosphere’s
general circulation [28], particularly when considering its
response to climate change [26]. Our results suggest that
the coupled climate subnetwork approach presented in this
work opens promising perspectives for the integrated anal-
ysis of several fields of climatological observables or, more
generally, spatially embedded fields of arbitrary time se-
ries in the context of Earth system analysis. Particularly
it will serve researchers as a tool complementary to estab-
lished linear methods for the joint analysis of several cli-
mate data sets like canonical correlation analysis or singu-
lar value decomposition of the covariance matrix between
two fields [42]. Furthermore, we expect the proposed gen-
eral graph-theoretical framework to meet the increasing
need for investigating and understanding the interaction
of complex systems from domains as diverse as social sci-
ence, technology and engineering or the life sciences, as
well as to stimulate further research in this direction, e.g.,
into supplementing the analysis with sophisticated null
models designed for assessing selected aspects of interact-
ing network structure.
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