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this study, formal relationships as well as conceptual dif-
ferences between both eigen and network approaches are 
derived and illustrated using global precipitation, evapo-
ration and surface air temperature data sets. These results 
allow us to pinpoint that CN analysis can complement clas-
sical eigen techniques and provides additional information 
on the higher-order structure of statistical interrelationships 
in climatological data. Hence, CNs are a valuable supple-
ment to the statistical toolbox of the climatologist, particu-
larly for making sense out of very large data sets such as 
those generated by satellite observations and climate model 
intercomparison exercises.

Keywords Climate networks · Empirical orthogonal 
functions · Coupled patterns · Maximum covariance 
analysis · Climate data analysis

1 Introduction

Climatologists have long been interested in studying cor-
relations between climatological variables for gaining 
an understanding of the Earth’s climate system’s large-
scale dynamics (Katz 2002). Pioneering work in this field 
was done by Sir Gilbert T. Walker in the beginning of the 
twentieth century while attempting to find precursory pat-
terns for Indian monsoon events using statistical methods 
(Walker 1910), which culminated in the discovery of the 
tropical Walker circulation and the Pacific Southern Oscil-
lation (a part of the El Niño-Southern Oscillation known 
as ENSO). Later, new measurement devices as well as the 
rapid increase in available computing power allowed to 
investigate statistical interdependency structures of global 
or regional climatological fields x(t) = {xi(t)}

N
i=1 such as 

surface air temperature, pressure, or geopotential height 

Abstract Eigen techniques such as empirical orthogonal 
function (EOF) or coupled pattern (CP)/maximum covari-
ance analysis have been frequently used for detecting pat-
terns in multivariate climatological data sets. Recently, 
statistical methods originating from the theory of complex 
networks have been employed for the very same purpose of 
spatio-temporal analysis. This climate network (CN) analy-
sis is usually based on the same set of similarity matrices as 
is used in classical EOF or CP analysis, e.g., the correlation 
matrix of a single climatological field or the cross-correla-
tion matrix between two distinct climatological fields. In 
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(Fukuoka 1951; Lorenz 1956) (here, i is a spatial index, 
e.g., labeling N meteorological measurement stations or 
grid points in an aggregated data set, and t denotes time).

Nowadays, techniques of eigenanalysis such as empiri-
cal orthogonal functions (EOFs) (Kutzbach 1967; Wallace 
and Gutzler 1981; Hannachi et al. 2007) and coupled pat-
terns (CPs) (Bretherton et al. 1992) are standard tools for 
finding spatial as well as temporal patterns in climatologi-
cal data (von Storch and Zwiers 2003). Their applications 
range from statistical predictions (Lorenz 1956; Brunet and 
Vautard 1996; Repelli and Nobre 2004), over the definition 
of climate indices (Power et al. 1999; Leroy and Wheeler 
2008) to evaluating the performance of climate model 
simulation runs (Handorf and Dethloff 2009, 2012). While 
numerous linear and nonlinear extensions have been pro-
posed (Ghil and Malanotte-Rizzoli 1991; Ghil et al. 2002), 
e.g., rotated or simplified EOFs (Hannachi et al. 2007) and 
other methods of dimensionality reduction such as neural 
network-based nonlinear principal component analysis 
(PCA) (Hsieh 2004) or isometric feature mapping (ISO-
MAP) (Tenenbaum et al. 2000; Gámez et al. 2004), clas-
sical EOF and CP analysis have remained among the most 
popular statistical techniques applied in climatology so far.

In the last decade, complex network theory has been 
introduced as a powerful framework for extracting informa-
tion from large volumes of high-dimensional data (New-
man 2003, 2010 Boccaletti et al. 2006; Cohen and Havlin 
2010) such as those generated by neurophysiological or 
biochemical measurements, quantitative social science as 
well as climatological observations and modeling cam-
paigns. While EOFs, CPs, and related methods effectively 
rely on a dimensionality reduction, network techniques 
allow to study the full complexity of the statistical interde-
pendency structure within a multivariate data set. In these 
climate networks (CNs), which were first introduced by 
Tsonis and Roebber (2004), Tsonis et al. (2006), nodes cor-
respond to time series of climate variability at grid points 
or observational stations and links indicate a relevant sta-
tistical association between two such time series. For quan-
tifying statistical associations, linear covariance or Pear-
son correlation can be used analogously to EOF and CP 
analysis (Tsonis and Roebber 2004; Tsonis and Swanson 
2008; Yamasaki et al. 2008), but nonlinear measures such 
as mutual information (Donges et al. 2009a, b; Barreiro 
et al. 2011) or transfer entropy (Runge et al. 2012a) may 
be employed as well with care (Hlinka et al. 2014). Among 
other applications, CNs have been used to uncover global 
impacts of El Niño events (Tsonis and Swanson 2008; 
Yamasaki et al. 2008; Gozolchiani et al. 2011; Martin et al. 
2013; Radebach et al. 2013), trace the flow of energy and 
matter in the surface air temperature field (Donges et al. 
2009a), unravel the complex dynamics of the Indian sum-
mer monsoon (Malik et al. 2012; Stolbova et al. 2014), 

detect community structure enabling statistical prediction 
of climate indices (Tsonis et al. 2011; Steinhaeuser et al. 
2011, 2012) as well as intercomparisons between climate 
models and observations (Steinhaeuser and Tsonis 2014; 
Feldhoff et al. 2014), and study large-scale circulation pat-
terns and prominent modes of variability in the atmosphere 
(Tsonis et al. 2008; Donges et al. 2011c; Ebert-Uphoff and 
Deng 2012a, b). Furthermore, CN analysis has recently 
been employed to improve forecasting of El Niño episodes 
(Ludescher et al. 2013, 2014), predict extreme precipita-
tion events over South America (Boers et al. 2014a) and 
to derive early warning indicators for the collapse of the 
Atlantic meridional overturning circulation (Mheen et al. 
2013). Extending upon the majority of studies focussing 
on recent climate variability, the CN approach has also 
been applied to study late Holocene Asian summer mon-
soon dynamics based on data from paleoclimate archives 
(Rehfeld et al. 2013)

The main aim of this contribution is to put the recent 
CN approach into context with standard eigenanalysis, 
since both classes of methods are often based on the same 
set of statistical similarity matrices. We briefly review 
both classes of techniques to establish a common notation. 
Formal relationships are then derived between empirical 
orthogonal functions (EOF) or CPs and frequently used 
CN measures such as degree or cross-degree, respectively. 
These relationships are illustrated empirically using global 
satellite observations of precipitation and evaporation fields 
as well as surface air temperature reanalysis data. We fur-
thermore illustrate and argue in which settings higher-order 
CN measures such as betweenness may contain informa-
tion complementing classical eigenanalysis. For example, 
betweenness can be interpreted as approximating the flow 
of energy and matter within a climatological field and is 
particularly useful for identifying bottlenecks that may be 
particularly vulnerable to perturbations such as volcanic 
eruptions or anthropogenic influences (Donges et al. 2009a, 
2011c; Boers et al. 2013; Molkenthin et al. 2014a). Hence, 
by transferring insights and tools from complex network 
theory and complexity science to climate research, CNs 
meet the need for novel techniques of climate data analysis 
facing quickly increasing data volumes generated by grow-
ing observational networks and model intercomparison 
exercises like the coupled model intercomparison project 
(CMIP) (Meehl et al. 2005; Taylor et al. 2012).

This article is structured as follows: After describ-
ing the data to be analyzed (Sect. 2), we introduce eigen 
(Sect. 3) and network (Sect. 4) techniques for the statisti-
cal analysis of climatological data. Relationships between 
both approaches are formally derived and empirically 
demonstrated using observational climate data in Sect. 5. 
This leads us to pinpoint the added value of CN analysis 
(Sect. 6), before concluding in Sect. 7.
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2  Data

Imperfect retrieval algorithms and data merging of atmos-
pheric fields that are involved in the generation of reanaly-
sis data sets may cause uncertainties and lower quality of 
the final product of data analysis. In order to obtain consist-
ent and representative precipitation and evaporation fields, 
in this study, the fully satellite-based HOAPS-3 [Hamburg 
Ocean Atmosphere Parameters and Fluxes from Satellite 
Data, http://www.hoaps.org, Andersson et al. (2010b, 2011)] 
and combined HOAPS-3/ GPCC (Global Precipitation Cli-
matology Center, http://www.gpcc.dwd.de, Andersson et al. 
(2010a)) data sets are used. Regardless of the improved 
retrieval algorithms and high quality output product, the 
uniqueness of the HOAPS data set consists in utilization 
of only one satellite data set for retrieval of both, evapora-
tion, and precipitation parameters. Originally available at the 
resolution of 0.5 degrees in latitude and longitude, monthly 
mean precipitation (x(t)) and evaporation (y(t)) anomaly 
fields (1992–2005) were resampled to T63 resolution (≈ 1.8 
degrees) to reduce computational costs. Furthermore, areas 
with sea-ice coverage were excluded from the set of raw 
time series. This results in NP = 13,834 and NE = 7,986 
grid points (or network nodes) and M = 168 samples for 
each time series for the global precipitation and evaporation 
data sets, respectively. The smaller number of nodes in the 
evaporation field arises because the data are only available 
over the oceans, but not over land. We use the full global 
data sets for comparing univariate techniques of climate data 
analysis, but for clarity restrict ourselves to the North Atlan-
tic Ocean region for the multivariate methods.

Additionally, to put our work into context with earlier 
work on CN analysis (Tsonis and Swanson 2008; Yama-
saki et al. 2008; Donges et al. 2009a; Steinhaeuser et al. 
2012), we study global monthly averaged surface air tem-
perature (SAT) field data covering the years 01/1948–
12/2007 taken from the reanalysis I project provided by 
the National Center for Environmental Prediction/National 
Center for Atmospheric Research [NCEP/NCAR, Kistler 
et al. (2001)]. This data set consists of NT = 10,224 grid 
points (network nodes) and M = 720 samples for each time 
series.

3  Eigenanalysis

This section serves to introduce the mathematics of eigena-
nalysis necessary for the deductions made below. Specifi-
cally, standard EOF analysis of single climatological fields 
(e.g., the precipitation field) as well as CPs based on a singu-
lar value decomposition of the cross-correlation matrix [also 
termed maximum covariance analysis (MCA) in von Storch 
and Zwiers (2003)] for studying statistical relationships 

between two climatological fields (e.g., the precipitation 
and evaporation fields) are discussed. Of all the variants of 
eigenanalysis (Hannachi et al. 2007), these two approaches 
appear to be the most frequently used and are also most 
closely related to CN and coupled CN analysis, respectively, 
as will be elaborated on in Sect. 5. For further details, the 
reader is referred to Bretherton et al. (1992), von Storch and 
Zwiers (2003) or Hannachi et al. (2007).

Note, that for consistency with the CN literature (see 
Sect. 4), we define EOFs (CPs) based on the correlation 
(cross-correlation) instead of the covariance (cross-covar-
iance) matrix. The results and conclusions presented in 
Sects. 5 and 6 would not change qualitatively if the covari-
ance (cross-covariance) matrix would be used for both 
eigenanalysis and CN construction.

3.1  Empirical orthogonal function analysis

Given a set of normalized time series x(t) = {xi(t)}
N
i=1 with 

zero mean and unit standard deviation, the correlation 
matrix CX = {CX

ij }ij is defined by

where M is the length (number of samples) of each time 
series.

The aim of EOF analysis [also termed principal com-
ponent analysis in the statistical literature (Preisendorfer 
and Mobley 1988)] is a dimensional reduction achieved by 
decomposing the data into linearly independent linear com-
binations of the different variables that explain maximum 
variance (Hannachi et al. 2007). The EOFs uk are obtained 
as solutions of the eigenvalue problem

The k–th EOF uk is the eigenvector corresponding to the k
–th largest eigenvalue �k, where uik denotes the i–th compo-
nent of the k–th EOF (Fig. 1). The EOFs are sorted accord-
ing to the ordering of their associated non-negative eigen-
values �k such that �1 ≥ �2 ≥ · · · ≥ �R (R is the rank of 
CX). Hence, u1 associated with the largest eigenvalue �1 is 
called the leading EOF of the underlying data set and rep-
resents the one-dimensional projection of the data with the 
largest possible variance.

The normalized data xi(t) can be decomposed as (Fig. 1)

where ak(t) is the t–th component of the k–th principal 
component ak (PC) (temporal pattern) associated with the k
–th EOF uk (spatial pattern) with

(1)CX
ij =

1

M

M
∑

t=1

xi(t)xj(t),

(2)CXuk = �kuk .

(3)xi(t) =

R
∑

k=1

�kak(t)uik ,

http://www.hoaps.org
http://www.gpcc.dwd.de
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For many climatological data sets such as the precipitation 
and evaporation fields studied here, most of the variance in 
the data x(t) can be explained by a small number of EOFs, 
i.e., the eigenvalues �k decay quickly with increasing rank 
k (Fig. 2). Equation (3) shows that in this situation, only a 
few EOFs and PCs are needed to closely approximate the 
data which allows the dimensionality reduction of high-
dimensional data sets.

3.2  Coupled pattern (maximum covariance) analysis

 Given two sets of normalized time series x(t) = {xi(t)}
NX

i=1,  

and y(t) = {yj(t)}
NY

j=1 the cross-correlation matrix 

CXY = {CXY
ij }ij is defined by

(4)ak(t) =

N
∑

j=1

ujkxj(t).

where M is the length (number of samples) of each time 
series.

Maximum covariance analysis identifies spatially orthonor-
mal pairs of coupled patterns pXk = {pXik}

NX

i=1, p
Y
k = {pYjk}

NY

j=1 
that explain as much as possible of the temporal covariance 
between the two fields x(t) and y(t) (Bretherton et al. 1992; 
von Storch and Zwiers 2003). The coupled patterns can be 
found by solving the system of equations

by means of a singular value decomposition of CXY 
(Fig. 3). Here, the pXk  are an orthonormal set of R vectors 
called left singular vectors, the pYk  are an orthonormal set of 
R vectors called right singular vectors, and the σk are non-
negative numbers called singular values, ordered such that 
σ1 ≥ σ2 ≥ · · · ≥ σR. Here, R denotes the rank of CXY. The 
total squared covariance explained by a certain pair of pat-
terns pXk , p

Y
k  is σ 2

k . Therefore, the leading coupled patterns 
pX1 , p

Y
1  explain the largest fraction of squared covariance 

between the two fields of interest. In our example, taking 
into account only a few pairs of coupled patterns with the 
largest σk already explains most of the covariance between 
the precipitation and evaporation fields (Fig. 4).

The fields x(t), y(t) can be expanded in terms of the cou-
pled patterns as

(5)CXY
ij =

1

M

M
∑

t=1

xi(t)yj(t),

(6)
(CXY )TpXk = σkp

Y
k

CXYpYk = σkp
X
k

Fig. 1  A schematic outline of the relationship between univariate 
EOF and climate network analysis in the spirit of the diagrams in 
Bretherton et al. (1992). The eigen decomposition (PCA) operation is 
represented by the square, the thresholding operation by the disc. All 
vectors are written in component form

Fig. 2  Percentage of variance �k/
∑R

l=1 �l explained by EOFs uk 
for the HOAPS-3/GPCC precipitation data set. Error bars were esti-
mated using North’s rule of thumb (North et al. 1982)

Fig. 3  A schematic outline of the relationship between coupled pat-
tern (maximum covariance) and coupled climate network analysis 
in the spirit of the diagrams in Bretherton et al. (1992). The singular 
value decomposition (SVD) operation is represented by the triangle, 
the thresholding operation by the disc. All vectors are written in com-
ponent form
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The expansion coefficients are obtained by projecting

4  Network techniques

Complex network analysis offers a general framework 
for studying the structure of associations (links) between 
objects (nodes) that are of interest in many disciplines. 
Typical examples include the internet or world wide web 
in computer science, road networks and power grids in 
engineering, food webs in biology or social networks in 
sociology (Newman 2003, 2010; Boccaletti et al. 2006; 
Cohen and Havlin 2010). It has become popular recently 
in several fields of science to apply the wealth of concepts 
and measures from complex network theory for the analy-
sis of data that is not given explicitly in network form. In 

(7)xi(t) =

R
∑

k=1

aXk (t)p
X
ik ,

(8)yi(t) =

R
∑

k=1

aYk (t)p
Y
ik .

(9)aXk (t) =

NX
∑

i=1

pXikxi(t),

(10)aYk (t) =

NY
∑

i=1

pYikyi(t).

network-based data analysis, a data set at hand, e.g., con-
sisting of time series such as electroencephalogram and 
climate records, or spatiotemporal point events such as 
earthquake aftershock swarms, first has to be transformed 
to a network representation by means of a suitable algo-
rithm or mathematical mapping. The resulting networks 
are referred to as functional networks to distinguish them 
from structural networks that are derived from systems 
with a more obvious graph structure, e.g., social networks 
or power grids. Examples of functional networks include 
gene regulatory networks in biology (Hempel et al. 2011), 
functional brain networks in neuroscience (Bullmore and 
Sporns 2009), CNs in climatology (Donges et al. 2009a, 
b, 2011c), or networks of earthquake aftershocks in seis-
mology (Davidsen et al. 2008). Forming a distinct class of 
methods, techniques for the network-based analysis of sin-
gle or multiple time series such as recurrence networks (Xu 
et al. 2008; Marwan et al. 2009; Donner et al. 2010) and 
visibility graphs (Lacasa et al. 2008) have recently been 
studied intensively with a focus on (paleo-)climatological 
applications (Donges et al. 2011a, b; Hirata et al. 2011; 
Donner and Donges 2012; Feldhoff et al. 2012).

The first functional network analysis of fields of clima-
tological time series x(t) was presented by Tsonis and 
Roebber (2004), introducing the term climate network.1 
Climate network analysis offers novel insights by transfer-
ring the toolbox of measures and algorithms from complex 
network theory to the study of climate system dynamics. 
Climate networks are simple graphs (i.e., there are no self-
loops and at most one link between each pair of nodes) 
consisting of N spatially embedded nodes i that correspond 
to time series xi(t) representing observations, reanalyses, or 
simulations of climatological variables at fixed measure-
ment stations, grid cells, or certain predefined regions. 
Links {i, j} represent particularly strong or significant statis-
tical interdependencies between two climate time series 
xi(t), xj(t), where usually a filtering procedure is applied 
first to reduce the effects of the annual cycle (Donner et al. 
2008).

Put differently, for a pairwise measure of statistical asso-
ciation Sij such as Pearson correlation (Tsonis and Roeb-
ber 2004; Tsonis et al. 2006), mutual information (Donges 
et al. 2009a, b; Paluš et al. 2011), transfer entropy (Runge 
et al. 2012a), or event synchronization (Malik et al. 2012; 
Boers et al. 2013, 2014b; Stolbova et al. 2014), a CN’s 
adjacency matrix is given by

1 Note that the term climate network is also used in distinct contexts 
that are unrelated to graph theory or data analysis, e.g., for describ-
ing collections of climatological/weather observation stations like the 
Greenland climate network (Steffen and Box 2001) or associations 
of political organizations dealing with anthropogenic climate change 
such as the Climate Network Europe (Raustiala 2001).

Fig. 4  Percentage of squared covariance σ 2
k /

∑R
l=1 σ

2
l  between 

HOAPS-3/GPCC precipitation (X) and HOAPS-3 evaporation (Y) 
data sets over the North Atlantic region (see Fig. 7) that is explained 
by pairs of coupled patterns pXk ,p

Y
k . Most of the data sets’ cross-

covariance is captured by a small number of modes with the largest 
singular values σk. Error bars were estimated using North’s rule of 
thumb (North et al. 1982)
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where Θ(·) is the Heaviside function, Tij denotes a threshold 
parameter, and Aii = 0 is set for all nodes i to exclude self-
loops. Usually, the threshold is fixed globally, i.e., Tij = T  
for all node pairs (i, j). However, Tij may also be set for each 
pair individually to only include links with values of Sij 
exceeding a prescribed significance level, e.g., determined 
from a statistical test using surrogate time series (Paluš et al. 
2011). In most studies, symmetric measures of statistical 
interdependency Sij = Sji have been considered, leading to 
undirected CNs. However, Gozolchiani et al. (2011), Malik 
et al. (2012) and Boers et al. (2014b) exploited asymmetries 
in the cross-correlation function as well as in a measure of 
event synchronization to reconstruct directed CNs.

In the following, univariate and coupled CNs are intro-
duced for studying the statistical interdependency structure 
within single fields as well as between two fields, respec-
tively, together with graph-theoretical measures that are 
typically used for their quantification. For consistency with 
eigenanalysis (see Sect. 3), we restrict ourselves to linear 
Pearson correlation at zero lag as the measure of statistical 
association, i.e., Sij = |Cij|.

4.1  Univariate climate networks

Given a climatological field x(t), the adjacency matrix 
A = {Aij}ij of the associated climate network is given by

with a prescribed global threshold 0 ≤ T ≤ 1, where δij 
denotes Kronecker’s delta [see Eq. (1) for the definition 
of CX

ij ]. The absolute value of Pearson correlation 
∣

∣

∣
CX
ij

∣

∣

∣
 is 

commonly used, typically because negative correlations are 
considered equally important as positive ones (Tsonis and 
Roebber 2004). Among others, univariate CNs have been 
studied by Tsonis et al. (2006, 2008, 2011), Tsonis and 
Swanson (2008), Yamasaki et al. (2008, 2009), Gozolchiani 
et al. (2008, 2011), Donges et al. (2009a, b, 2011c), Berezin 
et al. (2012), Guez et al. (2012), Paluš et al. (2011), Tom-
inski et al. (2011), Zou et al. (2011), Malik et al. (2012), 
Rheinwalt et al. (2012), Rehfeld et al. (2013).

The degree ki is the most frequently applied measure for 
studying CNs. It gives the number of network neighbors for 
each node i and is defined as

Maxima in the spatial pattern k with values of the degree 
that are much larger than average are referred to as 

(11)Aij =

{

Θ
(

Sij − Tij
)

if i �= j,

0 otherwise,

(12)Aij = Θ

(∣

∣

∣
CX
ij

∣

∣

∣
− T

)

− δij

(13)ki =

N
∑

j=1

Aij =

N
∑

j=1

Θ

(∣

∣

∣
CX
ij

∣

∣

∣
− T

)

− 1.

supernodes or hubs (Tsonis and Roebber 2004; Tsonis 
et al. 2006). These super-nodes indicate regions in the 
underlying field that are particularly strongly correlated to 
many other parts of the globe which are typically related to 
teleconnection patterns (Tsonis et al. 2008). For example, 
in the HOAPS-3/GPCC precipitation data the most strongly 
connected region in the tropical Pacific (Fig. 5b) corre-
sponds to the El Niño-Southern Oscillation that is known 
to display global teleconnections (Ropelewski and Halpert 
1987; Halpert and Ropelewski 1992; Tsonis et al. 2008).

Path-based centrality measures from network theory 
reveal higher-order patterns in the statistical interdepend-
ency structure of a climatological field (Donges et al. 
2009a, b; Paluš et al. 2011). High-order, in this context, 
refers to structures such as paths or network motifs that 
consist of two or more links, in contrast to the degree that 
is restricted to counting pairwise relationships between 
nodes. In this study, shortest-path closeness and between-
ness are considered. Closeness centrality c = {ci}

N
i=1 (CC) 

measures the inverse mean network distance of node i to all 
other nodes via shortest paths and is defined as

where lij denotes the length of a shortest (or geodesic) path 
connecting nodes i and j, i.e., the smallest number of links 
that are passed when traveling from i to j in the CN. In 
contrast, betweenness b = {bi}

N
i=1 (BC) counts the relative 

number of shortest paths connecting any pair of nodes j, k 
that include node i and is defined as

Here, njk denotes the total number of shortest paths between 
j, k. njk(i) gives the size of the subset of these paths that 
include i. CC and BC have been applied for comparing 
different types of CNs (Donges et al. 2009b), revealing a 
backbone of energy flow in the surface air temperature field 
(Donges et al. 2009a), unraveling the complex dynamics of 
the precipitation field during the Indian summer monsoon 
(Malik et al. 2012), and studying the signatures of El Niño 
and La Niña events (Paluš et al. 2011). See Sect. 6 for a 
more in depth discussion of the interpretation of these CN 
measures.

4.2  Coupled climate networks

One option for condensing information from more than 
one climatological observable in a CN is to define links 
based on statistical interdependencies between multi-
variate time series describing the dynamics of multiple 

(14)ci =
N − 1
∑N

j=1 lij
,

(15)bi =

N
∑

j=1

N
∑

k=1

njk(i)

njk
.
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observables recorded at the same locations/nodes. For 
example, Steinhaeuser et al. (2010) analyzed a CN con-
structed from surface air temperature, pressure, rela-
tive humidity, and precipitable water to extract regions of 
related climate variability. In contrast to this multivariate 

approach, coupled CNs are designed to represent statistical 
dependencies within and between two climatological fields 
x(t) = {xi(t)}

NX

i=1, y(t) = {yj(t)}
NY

j=1 or within and between 
different regions (Donges et al. 2011c). For this purpose, all 
time series from each of the involved climatological fields 
are associated to NX + NY nodes in the resulting network 
(Fig. 6). A coupled CN is defined by its adjacency matrix A 
that is obtained by thresholding the correlation matrix C of 
the concatenated fields x(t), y(t), analogously to Eq. (12). 
Decomposing C as

suggests to view coupled CNs as networks of networks or 
multilayer networks (Zhou et al. 2006; Buldyrev et al. 2010; 
Gao et al. 2011; Boccaletti et al. 2014), where subnetworks 
(network layers) GX = (VX ,EXX) and GY = (VY ,EYY ) are 
the induced subgraphs of the sets of nodes VX ,VY belong-
ing to data sets x(t), y(t), respectively (Fig. 6). While the 
edge sets EXX ,EYY describe the fields’ internal correlation 
structure based on the correlation matrices CX ,CY, the set 
of cross-edges EXY captures dependencies between both 
fields and is based on the cross-correlation matrix CXY 
(Fig. 3). Coupled CNs have been applied for studying the 
Earth’s atmosphere’s general circulation structure (Donges 
et al. 2011c), processes linking climate variability in the 
North Atlantic and North Pacific regions via the Arctic 
(Wiedermann et al. 2013; in prep.) and global atmosphere-
ocean interactions (Feng et al. 2012). Also, the coupled CN 
approach underlies the method developed in Ludescher 
et al. (2013, 2014) for forecasting El Niño events.

The statistical interdependency structure between fields 
x(t), y(t) can be quantified with a set of graph-theoretical 
measures developed for investigating the topology of net-
works of interacting networks (Donges et al. 2011c). The 
cross-degree kXY = {kXYi }

NX

i=1 is the number of neighbors of 
node i ∈ VX in subnetwork GY:

(16)C =

(

CX CXY

(CXY )T CY

)

A

Leading EOF u1

B

Degree k

C

Percentage of variance explained by u1

Fig. 5  Maps of a first EOF u1, b climate network degree field 
k, and c local percentage of variance explained by first EOF 
u1, 100× Corr(xi(t), a1(t))

2 [homogeneous correlation map, see 
Björnsson and Venegas (1997)], for the global HOAPS-3/GPCC 
precipitation data set. The climate network construction threshold 
T = 0.27 was chosen to yield a link density of ρ = 0.01 [Eq. (25)]. 
Note the similarity in the patterns displayed in panels a–c that is 
explained in Sect. 5

VY

VX

EXY

EXX

EYY

Fig. 6  A coupled climate network as it is constructed in this work, 
where VX and VY denote the set of nodes in the subnetworks corre-
sponding to grid points in data sets x(t) and y(t), respectively. EXX 
and EYY are sets of internal links within the subnetworks describing 
statistical relationships within each climatological field, while EXY 
contains information on their mutual statistical interdependencies. 
Figure is adapted from Donges et al. (2011c)
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Analogously, the cross-degree kYX = {kYXj }
NY

j=1 is given by

Similarly to degree in univariate climate networks, regions 
i in field x(t) with a large cross-degree kXYi  are considered 
to be strongly dynamically interrelated with many loca-
tions in field y(t) and vice versa. For the precipitation 
and evaporation data sets (Fig. 7c, d), such regions with 
high cross-connectivity correspond to major covariability 
areas of evaporation and precipitation fields driven by the 
North-Atlantic Oscillation (NAO) (Andersson et al. 2010b; 
Petrova 2012).

Furthermore, analogously to univariate climate net-
works, generalizations of path-based measures for network 
of networks can be derived (Donges et al. 2011c). Here, 
cross-closeness and cross-betweenness are considered. 
Cross-closeness cXY = {cXYi }

NX

i=1 (cross-CC) measures the 
inverse mean network distance of node i ∈ VX to all nodes 
j ∈ VY via shortest paths and is defined as

Cross-betweenness bXY = {bXYi }
NX

i=1 (cross-BC) counts the 
relative number of shortest paths connecting any pair of nodes 
j ∈ VX , k ∈ VY that include node i ∈ VX and is defined as

For nodes j in field y(t), the measures cYX = {cYXj }
NY

j=1 and 
bYX = {bYXj }

NY

j=1 are obtained from analogous expressions 
following Donges et al. (2011c). Interpretations of coupled 
CN measures will be discussed in Sect. 6.

5  Relationships between eigen and climate network 
analysis

Comparing the results of eigen and CN analysis, notable 
similarities become apparent, e.g., in the leading EOF u1 
and CN degree k for the HOAPS-3/GPCC precipitation data 
(Fig. 5). Analogous relations are observed when inspecting 
leading coupled patterns and coupled CN cross-degree for 
HOAPS-3/GPCC precipitation and HOAPS-3 evaporation 
data (Fig. 7). To explain these similarities, in this section, 
formal relationships between patterns from eigen and CN 
analysis are derived and illustrated empirically for global 

(17)kXYi =
∑

j∈VY

Aij =

NY
∑

j=1

AXY
ij =

NY
∑

j=1

Θ

(∣

∣

∣
CXY
ij

∣

∣

∣
− T

)

.

(18)kYXj =
∑

i∈VX

Aij =

NX
∑

i=1

AXY
ij =

NX
∑

i=1

Θ

(∣

∣

∣
CXY
ij

∣

∣

∣
− T

)

.

(19)cXYi =
NX + NY − 1
∑

j∈VY
lij

.

(20)bXYi =
∑

j∈VX

∑

k∈VY

njk(i)

njk
.

precipitation and evaporation data sets. Relations between 
single field (EOFs and univariate CN measures, Sect. 5.1) 
as well as multiple field patterns (coupled patterns and cou-
pled CN measures, Sect.  5.2), and temporal patterns (Sect. 
5.3) are discussed. Note that similar relationships hold 
when both eigen and network analysis are based on a type 
of symmetric similarity matrix that is different from linear 
correlation at zero lag, e.g., considering mutual information 
(Donges et al. 2009a, b) or the ISOMAP algorithm (Tenen-
baum et al. 2000; Gámez et al. 2004).

5.1  Single field patterns

As the correlation matrix CX is symmetric and, hence, diag-
onalizable, it can be decomposed with respect to its eigen-
system such that

If the leading EOF u1 explains a large fraction of the total 
variance, i.e., if �1 ≫ �2, then CX

ij  can be approximated as

Inserting this expression into the definition of CN degree 
(Eq. 13) yields

This approximation explains the empirically observed simi-
larity between degree k and the leading EOF u1 (compare 
Fig. 5, panels a and b, for the precipitation data set) in the 
following way: All nodes j with |uj1| > T

�1|ui1|
 contribute to 

the degree ki at node i, hence, a larger |ui1| typically leads 
to more positive contributions to the sum in Eq. (23) and, 
therefore, to a larger degree ki. Consequently, CN degree k 
and the vector of absolute values of the leading EOF’s ele-
ments |u1| are expected to be positively correlated.

For the global precipitation data set, a large positive cor-
relation between k and |u1| is indeed detected for intermedi-
ate thresholds T of the order where CNs are typically con-
structed (Donges et al. 2009b), while for smaller and larger 
thresholds, the correlation decreases (Fig. 8a). The latter is 
expected, since both for T → 0 (fully connected network) 
and T → 1 (network devoid of links), the CN contains no 
information about the climatological field anymore and 
the degree field is constant with ki → N − 1 and ki → 0 
for all nodes i, respectively. Hence, maximum pattern cor-
respondence is expected for intermediate thresholds T (for 
these as well as computational reasons, results for T = 0 
and T = 1 are not included in Fig. 8). Notably, selecting 

(21)CX
ij =

R
∑

k=1

uik�kujk .

(22)CX
ij ≈ �1ui1uj1.

(23)ki ≈

N
∑

j=1

Θ(�1
∣

∣ui1uj1
∣

∣− T)− 1.
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T as maximizing the correlation between degree k and the 
leading EOF |u1| could provide a criterion for an informed 
choice of the threshold T. Such a choice would approximate 
a situation where the information that the CN contains on 
linear statistical interdependencies in the field of interest is 

maximized. Further work is needed to develop more suita-
ble criteria for defining binary CNs with maximum informa-
tion content. Furthermore and as expected, the correlation 
between degree k and the second EOF |u2| is mostly smaller 
than that between degree and leading EOF (Fig. 8a).

A

Leading CP p1
X

B

Leading CP p1
Y

C

Cross-degree kXY

D

Cross-degree kYX

E

Cross-covariance explained by p1
Y

F

Cross-covariance explained by p1
X

Fig. 7  Maps of leading pair of coupled patterns a pX
1
 and b pY

1
, cou-

pled climate network cross-degree fields c kXY and d kYX, and per-
centage of cross-covariance explained by first pair of coupled patterns 
e pY

1
, 100× Corr(xi(t), a

Y
1
(t))2, and f pX

1
, 100× Corr(yi(t), a

X
1
(t))2 

(heterogeneous correlation maps, see Björnsson and Venegas (1997)), 

for the HOAPS-3/GPCC precipitation (X) and HOAPS-3 evaporation 
(Y) data sets over the North Atlantic. For constructing the coupled 
climate network, a threshold T = 0.47 was chosen to yield a cross-
link density of ρXY = 0.01 (Eq. 31) resulting in internal link densities 
ρX = 0.01 and ρY = 0.06 (Donges et al. 2011c)
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Using the full eigen-decomposition of CX, an exact rela-
tionship between the degree k and all EOFs uk together 
with their associated eigenvalues �k can be derived as

Using this expression, the scalar link density

(24)ki =

N
∑

j=1

Θ

(∣

∣

∣

∣

∣

R
∑

k=1

uik�kujk

∣

∣

∣

∣

∣

− T

)

− 1.

(25)ρ =
�ki�

N
i=1

N − 1

can likewise be expanded or approximated, where �·� 
denotes the arithmetic mean. Similarly, a relationship 
between area-weighted EOFs (Hannachi et al. 2007), the 
area-weighted degree (Heitzig et al. 2012) (also called area 
weighted connectivity (Tsonis et al. 2006)) and all other 
network measures directly expressible in terms of the adja-
cency matrix Aij can be derived.

5.2  Coupled patterns

The cross-correlation matrix CXY can be decomposed in 
terms of singular values and coupled patterns as (Fig. 3)

The relationship between cross-degree kXY , kYX and cou-
pled patterns pXk , p

Y
k  can then be derived as above:

The approximations hold for the maximum singular value 
fulfilling σ1 ≫ σ2 ≥ · · · ≥ σR. By a similar argument as 
given above this shows that kXY and |pX1 | (kYX and |pY1 |) 
are expected to be positively correlated which is consist-
ent with our results regarding the interdependency struc-
ture between precipitation and evaporation fields. While 
in our example, the correspondence between the resulting 
patterns is somewhat less pronounced than in the single-
field setting (Fig. 8b), still regions with a strongly neg-
ative loading in the leading coupled patterns pX1  and pY1  
appear as super nodal structures in the cross-degree fields 
(Fig. 7). When studying varying network construction 
thresholds T , as in the case of single-field patterns, the 
correlation between the absolute values of the leading pair 
of coupled patterns and cross-degree fields is maximum 
for intermediate T  and decreases for T → 0 and T → 1 
(Fig. 8b). Also, consistently with Eqs. (27) and (29), 
the correlation between the second pair of coupled pat-
terns and cross-degree fields is always smaller than that 

(26)CXY
ij =

R
∑

k=1

σkp
X
ikp

Y
jk .

(27)kXYi =

NY
∑

j=1

Θ
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X
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∣

∣
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(29)kYXj =
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∑

i=1

Θ

(∣

∣
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∣
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σkp
X
ikp
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(30)≈

NX
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Fig. 8  Linear correlations between spatial patterns from eigen and 
network techniques for climate data analysis. Pearson correlation 
between (a) the absolute values of the first two EOFs |u1|, |u2| and 
CN measures degree k, closeness c and betweenness b for HOAPS-3/
GPCC precipitation data as well as (b) the first coupled patterns 
pX
1
,pY

1
 and coupled CN measures cross-degree kXY ,kYX, cross-close-

ness cXY , cYX, and cross-betweenness bXY ,bYX for HOAPS-3/GPCC 
precipitation (X) and HOAPS-3 evaporation data. In both panels, cor-
relations are displayed for varying network construction threshold T ,  
where the corresponding p-value according to the Student’s t-test is 
given on the upper horizontal axis. Vertical lines in panels a, b indi-
cate the thresholds used in Figs. 5 and 7, respectively
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observed for the leading pair of coupled patterns (results 
not shown).

The scalar cross-link densities (Donges et al. 2011c)

can also be expanded and approximated in terms of CPs 
and singular values using the above expressions. Analo-
gously, area-weighted coupled patterns (von Storch and 
Zwiers 2003) are related to the area-weighted cross-degree 
introduced by Feng et al. (2012) and Wiedermann et al. 
(2013).

5.3  Temporal patterns

In EOF analysis, temporal patterns (principal components) 
ak(t) describing the evolution of their associated spatial 
patterns uk are easily obtained by projecting the data x(t) 
onto the latter patterns uk [Eq. (4)]. Analogously, the same 
holds for multivariate extensions such as coupled pattern 
analysis (Bretherton et al. 1992; von Storch and Zwiers 
2003), see Sect. 3. In CN analysis, however, the temporal 
evolution of spatial network measure patterns such as the 
degree k or betweenness b cannot be directly obtained from 
the adjacency matrix A and x(t). To allow the study of non-
stationarities in the statistical interdependence structure of 
climatological fields, several authors have investigated the 
evolving local [e.g., k(t) or b(t)] and global properties of 
CNs A(t) constructed from temporal windows sliding over 
the time series data (Gozolchiani et al. 2008, 2011; Yama-
saki et al. 2008, 2009; Guez et al. 2012; Berezin et al. 2012; 
Carpi et al. 2012; Martin et al. 2013; Radebach et al. 2013; 
Ludescher et al. 2013, 2014). A similar strategy could be 
applied to coupled CN analysis.

It should be noted that unlike in the above sections, no 
direct relationship can be derived linking temporal pat-
terns from eigen and network analysis. The reason for this 
is twofold. First, temporal patterns ak(t) of standard EOF 
analysis are based on the full data set x(t), while the evolv-
ing spatial network patterns are computed from subsets 
(defined by temporal windows) of x(t). Second, since tem-
poral patterns ak(t) of eigenanalysis are merely scalar pref-
actors in the expansion Eq. (3) (see Figs. 1, 3), the spatial 
EOF patterns uk are time-independent, whereas evolving 
CN measures such as k(t) can vary independently at every 
location i. Hence, in contrast to standard EOF patterns, 
the spatial patterns in the network properties derived from 
evolving CNs are explicitly time-dependent. The latter case 
is analogous to extended EOF analysis, where standard 

(31)

ρXY =

〈

kXYi
〉NX

i=1

NY

ρYX =

〈

kYXj

〉NY

j=1

NX

EOF analysis is applied in a sliding-window mode as well 
(Fraedrich et al. 1997).

6  Discussion

The relationships derived in the previous section provide 
guidance on deciding how and in which applications CN 
analysis can be expected to yield information that is com-
plementary to the results of eigenanalysis. Particularly, we 
will focus on a discussion and climatological interpretation 
of single field and coupled patterns derived from precipi-
tation and evaporation data (Sect. 6.1) and relate this to a 
study of single field patterns for global surface air tempera-
ture data (Sect. 6.2). Based on these insights, we point out 
some methodological as well as practical potentials of CN 
analysis of climatological fields (Sect. 6.3).

6.1  Precipitation and evaporation data

For the HOAPS-3/GPCC precipitation and HOAPS-3 evap-
oration data sets, pronounced similarities between the fea-
tures observed in the degree or cross-degree fields and those 
in the leading EOF or coupled patterns that are derived 
from the same data have been described and explained 
mathematically (Sect. 5). More specifically, active regions 
displaying strong correlations with many other locations, 
and, hence, a large degree or cross-degree [termed super-
nodes in the context of CN analysis (Tsonis and Roebber 
2004; Tsonis et al. 2006; Barreiro et al. 2011)] correspond 
to regions with large positive or negative loading in the 
leading EOF or coupled patterns. For example, this can be 
observed for the equatorial Pacific in the precipitation data 
(Fig. 5a, b). The spatial similarity between the amplitude 
of the leading EOF and CN degree field reveals the well-
known ENSO variability pattern (Ropelewski and Halpert 
1987). Particularly, the patterns in the explained variance 
fraction (Fig. 5c) closely resemble high connectivity areas 
of the CN that are related to prominent ENSO teleconnec-
tions (Andersson et al. 2010b; Halpert and Ropelewski 
1992; Ropelewski and Halpert 1987). Additional dipole 
information described by the EOF is typically preserved by 
neighbors of the network’s major super-nodes [not shown 
here, see Petrova (2012) and Kawale et al. (2013)].

Considering the bivariate analysis of precipitation and 
evaporation data over the North Atlantic (Fig. 7), regions 
with a strongly negative loading in the leading pair of 
coupled patterns appear as super nodal structures in the 
cross-degree fields obtained from coupled CN analysis. 
Areas with a high fraction of explained cross-covariance 
(Fig. 7e, f) well correspond to the coupled network topol-
ogy as indicated by the cross-degree fields (Fig. 7c, d) and 
all together depict major covariability areas of evaporation 



2418 J. F. Donges et al.

1 3

and precipitation driven by the NAO. The cross-degree 
field kXY (Fig. 7c), displaying the number of strong correla-
tions between precipitation variability at a certain location 
with evaporation dynamics at all other grid points, reveals 
teleconnections associated to the NAO over the southern tip 
of Greenland as well as a positive NAO signal over Por-
tugal and a negative NAO signal over Norway (Andersson 
et al. 2010b). In turn, the cross-degree field kYX (Fig. 7d), 
showing the number of strong correlations between evapo-
ration dynamics at one point and precipitation variability 
at all other locations, is only available over the ocean and 
follows the covariance structure of the main evaporation 
determinant parameters with NAO (Cayan 1992; Marshall 
et al. 2001).

Beyond the frequently studied degree k, complex net-
work theory provides a wealth of additional measures that 
can be used to study higher-order properties of the statisti-
cal interdependency structure within and between climato-
logical fields. For example, the above-mentioned measures 
based on the properties of shortest paths in (coupled) CNs 
such as (cross-) closeness c (cXY , cYX) and (cross-) between-
ness b (bXY , bYX) (Fig. 9) have been argued to give insights 
on the local speed of propagation as well as the preferred 
pathways for the spread of perturbations within or between 
the studied fields, respectively (Donges et al. 2009a, b, 
2011c; Malik et al. 2012; Molkenthin et al. 2014a). In this 
way, CN analysis has the potential to unveil information on 
climate dynamics from climatological field data that con-
ceptually supplements the results of eigenanalysis.

Focussing on the precipitation data to further investi-
gate this aspect, we find that the correlation of CC and BC 
to the first two EOFs obtained from the data are systemati-
cally and significantly smaller than that between the degree 
field and the same EOFs (Fig. 8a). Similarly, in the bivari-
ate case, the correlations of cross-CC and cross-BC with the 
leading coupled pattern are considerably smaller than those 
between the latter and cross-degree for most thresholds T  
(Fig. 8b). However, for the HOAPS-3/GPCC precipitation 
data, the patterns observed in the leading EOF resemble 
those found in the CC and BC fields (Fig. 9) as well as those 
in the degree field (Fig. 5). These results can be explained 
from a network point of view by considering that precipi-
tation fields are typically only correlated on short spatial 
scales and display a smaller degree of spatial coherency 
when compared to other atmospheric variables such as pres-
sure or temperature (Feldhoff et al. 2014). In turn, this leads 
to a larger degree of randomness in the structure of CNs 
constructed from this data. In random networks, correlations 
between centrality measures such as degree, closeness and 
betweenness arise (Boccaletti et al. 2006). In other words, 
spatially incoherent climatological fields can give rise to 
CNs with a notable degree of disorder in the placement of 
links between different nodes which induces correlations 

between network centrality measures. For the precipita-
tion data set at hand, the first eigenvalue separates from the 
remaining spectrum (Fig. 2) leading to a pronounced corre-
lation between the leading EOF u1 and the degree field (see 
Eq. 23), and, hence, to correlations between u1 and CC, BC.

6.2  Surface air temperature data

 Next, we investigate the NCEP/NCAR reanalysis I sur-
face air temperature (SAT) field as another frequently 

A

Leading EOF u1

B

Closeness c

C

Betweenness b (log10 scale)

Fig. 9  Maps of a leading EOF u1, b closeness field c, and c between-
ness field b for the global HOAPS-3/GPCC precipitation climate net-
work. The network construction threshold T = 0.27 was chosen to 
yield a link density of ρ = 0.01
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studied data set. The properties of this data are complemen-
tary to those of the precipitation field discussed above in two 
aspects: (1) for the SAT data, the leading two EOFs explain 
approximately the same amount of variance (Fig. 10), while 
the leading eigenvalue separates more markedly from the 
remainder of the spectrum in the case of the precipitation 
data (Fig. 2), and, (2) the SAT field is known to display a 
stronger degree of spatial coherency than the precipita-
tion field. In the light of the discussion in Sect. 6.1, these 
two properties are reflected when comparing the leading 
three EOFs and network properties for the SAT data set 
(Fig. 11). Firstly, the degree field resembles the leading EOF 
less than in case of precipitation data (Fig. 11a, d), which is 
expected due to the weaker separation of the leading eigen-
values (Sect. 5.1; Eq. 23). Consistently, the degree field dis-
plays an even less pronounced similarity to the second and 
third EOFs (Fig. 11b–d). While the patterns found in the 
CC field (Fig. 11e) still partly resemble those in the degree 
field (Fig. 11d) as well as those in the leading two EOFs 
(Fig. 11a, b), the BC field displays markedly distinct features 
(Fig. 11f). Only in a few regions, these structures of high 
betweenness appear to coincide with patterns of large EOF 
loadings, e.g., high betweenness structures found along the 
West coasts of North and South America correspond to large 
positive loadings in the second and third EOFs, respectively.

The observed linear wave-like structures of large BC in the 
SAT field have been interpreted as signatures of the transport 
of temperature anomalies in strong surface ocean currents 
(Donges et al. 2009a, b). For example, the large betweenness 
structures resemble strong western boundary currents such as 
the Kuroshio of the East coast of Japan or Eastern boundary 
currents such the Canary current off the African west coast. It 
should be noted that while some of the structures in the BC 
field such as the one resembling the North Atlantic’s subtropi-
cal gyre appear blurred, the logarithmic color scale used in 
Fig. 11f implies that even small changes in color correspond 
to exponentially large changes in BC. This interpretation of 
high betweenness structures in CNs constructed based on 
Pearson correlation as advective structures such as strong cur-
rents is supported by recent analytical studies that are based 
on well-known fluid dynamical model systems (Molkenthin 
et al. 2014a, b). Further evidence that is also consistent with 
this interpretation of betweenness was found in a study of ver-
tical interactions in the atmospheric geopotential height field, 
where regions of large cross-BC in the Arctic suggest that 
vertical air flow induced by the Arctic vortex is important for 
mediating the propagation of wind field anomalies between 
different isobaric surfaces (Donges et al. 2011c). Also, Boers 
et al. (2013) employ BC and further network measures for 
precipitation data over South America to highlight the impor-
tance of atmospheric structures such as the South American 
low level jet for the propagation of extreme rainfall events, 
specifically over long distances.

6.3  Potentials of climate network analysis

The examples discussed above suggest that CN analysis 
may be particularly useful in situations where (1) a domi-
nant EOF (pair of coupled patterns) explaining signifi-
cantly more variance (cross-covariance) in the data than 
further modes does not exist and (2) the climatological field 
of interest displays a certain degree of spatial coherence 
reflecting, e.g., winds, ocean currents or long-range tel-
econnections. Such rules could be useful in practice when 
deciding on which methodology should be applied to a data 
set of interest. While future research beyond the scope of 
this work is needed to address these suggestions, we move 
on to discuss the potentials of CN analysis from a meth-
odological point of view.

Considering higher-order network properties, approxi-
mate and exact relationships akin to Eqs. (23) and (24) can 
be derived for other (coupled) CN measures of interest like 
the local clustering coefficient (Donges et al. 2009b; Malik 
et al. 2012)

by plugging in the approximation Aij ≈ Θ(|�1ui1uj1| − T)

−δij or the full expansion of Aij in terms of EOFs (Sect. 5.1). 
However, the resulting lengthy expressions, particularly for 
path-based network measures such as CC and BC (Heitzig 
et al. 2012), hardly help to gain further understanding other 
than that both eigen and network approaches are based on 
the same underlying similarity matrix (Figs. 1, 3). In con-
trast, taking the local clustering coefficient as an example 
illustrates the added value of the complex network point of 
view: Eq. (32) can be easily understood as a local measure 

(32)Ci =

∑N
j,k=1 AijAjkAki
∑N

j,k=1 AijAik

Fig. 10  Percentage of variance �k/
∑R

l=1 �l explained by EOFs uk 
for the NCEP/NCAR surface air temperature data set. Error bars 
were estimated using North’s rule of thumb (North et al. 1982)
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for transitivity in the correlation structure of a climato-
logical field (Donges et al. 2009b, 2011c), while the same 
measure viewed as some function of all EOFs uk would 
be considered hard to interpret or meaningless in terms of 
eigenanalysis alone. In that sense, the network approach 
allows insights into the correlation structure of climatologi-
cal fields that go beyond and complement those obtainable 
by EOF analysis.

It has been shown in earlier studies that the statistical 
information provided by CN analysis is valuable for com-
plementing standard techniques of eigenanalysis for tasks 
like model tuning, model validation (Feldhoff et al. 2014), 
model and model-data intercomparison (Petrova 2012; 
Steinhaeuser and Tsonis 2014; Fountalis et al. 2013; Feld-
hoff et al. 2014), statistical forecasting (Steinhaeuser et al. 
2011), and explorative data analysis (Steinhaeuser et al. 
2010, 2012). Furthermore, the network approach allows 

to employ advanced algorithms for pattern recognition 
(Kawale et al. 2013), spatial coarse-graining (Fountalis 
et al. 2013) or community detection (Tsonis et al. 2011; 
Steinhaeuser et al. 2011; Steinhaeuser and Tsonis 2014). 
Recently, a series of studies based on well-defined fluid-
dynamical model systems has provided deeper insights 
into the structure of CNs, particularly into how the latter is 
related to the dynamics of the underlying physical system, 
as well as fostered the interpretation of CN measures (Mol-
kenthin et al. 2014a, b; Tupikina et al. 2014).

A particular advantage of CN analysis is that statistical 
methods originating from information and dynamical sys-
tems theory such as transfer entropy (Runge et al. 2012a, 
b), probabilistic graphical models (Ebert-Uphoff and Deng 
2012a, b), or event synchronization (Malik et al. 2012) can 
be naturally used for network construction, and, hence, for 
identifying processes and patterns which are not accessible 

A

B E

FC

D

Leading EOF u1

Second EOF u2

Third EOF u3

Degree k / (N-1)

Closeness c

Betweenness b (log10 scale)

Fig. 11  Maps of a–c the leading three EOFs u1,u2,u3, d normal-
ized degree field k/(N − 1), (e) closeness field c, and f betweenness 
field b for the global NCEP/NCAR surface air temperature climate 

network. The network construction threshold T = 0.67 was chosen to 
yield a link density of ρ = 0.01. In panel f, gray shading indicates 
regions with betweenness values smaller than 104
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when studying linear correlation matrices alone. Applying 
these modern methods of time series analysis for network 
construction allows, among other applications, to study the 
synchronization of climatic extreme events (Malik et al. 
2012; Boers et al. 2013, 2014b) or to suppress the mislead-
ing effects of auto-dependencies in time series, common 
drivers and indirect couplings by reconstructing causal 
interactions (in the statistical sense of information theory) 
between climatic sub-processes (Ebert-Uphoff and Deng 
2012a; Runge et al. 2012a, b, 2014). This in turn enables 
a more direct interpretation of the reconstructed network 
structures and resulting patterns in network measures in 
terms of climatic sub-processes and their interactions, 
avoiding the conceptual problems that arise in the interpre-
tation of results from purely correlation-based techniques 
such as classical EOF or CP analysis/MCA (Dommenget 
and Latif 2002; Jolliffe 2003; Monahan et al. 2009).

7  Conclusions

In summary, the main aim of this article has been to put the 
recently developed CN approach into context with stand-
ard eigenanalysis of climatological data, since both classes 
of methods are usually based on the same set of statistical 
similarity matrices, i.e., the linear correlation and cross-cor-
relation matrices at zero lag. We have derived formal rela-
tionships between EOFs or coupled patterns and frequently 
used first-order CN measures such as degree or cross-
degree, respectively. These relations have been illustrated 
empirically using global satellite observations of precipita-
tion and evaporation fields as well as reanalysis data for the 
global surface air temperature field. However, it has been 
shown that, and in which specific practical settings, higher-
order CN measures such as closeness and betweenness may 
contain complementary statistical information with respect 
to classical eigenanalysis. We have argued that this infor-
mation could be valuable for tasks such as model tuning, 
validation, and intercomparison as well as for improving 
statistical predictions of climate variability and explora-
tive data analysis. Hence, by transferring insights and tools 
from complex network theory and complexity science to 
climate research, CNs meet the need for novel techniques 
of climate data analysis facing quickly increasing data vol-
umes generated by growing observational networks and 
model intercomparison exercises like the coupled model 
intercomparison project (CMIP) (Taylor et al. 2012). Fur-
thermore, the application of advanced network-theoretical 
concepts and methods from fields like complexity science, 
information theory and machine learning promises novel 
and deep insights into Earth system dynamics, particularly 
considering the complex interactions of human societies 
with global climatic and biogeochemical processes.
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