Chapter 15

A Complex Network Approach to Investigate
the Spatiotemporal Co-variability of Extreme
Rainfall

Niklas Boers, Aljoscha Rheinwalt, Bodo Bookhagen, Norbert Marwan, and
Jiirgen Kurths

Abstract The analysis of spatial patterns of co-variability of extreme rainfall is
challenging because traditional techniques based on principal component analysis
of the covariance matrix only capture the first two statistical moments of the data
distribution and are thus not suitable to analyze the behavior in the tails of the
respective distributions. Here, we describe an alternative to these techniques which
is based on the combination of a nonlinear synchronization measure and complex
network theory. This approach allows to derive spatial patterns encoding the co-
variability of extreme rainfall at different locations. By introducing suitable network
measures, the methodology can be used to perform climatological analysis but also
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for statistical prediction of extreme rainfall events. We introduce the methodological
framework and present applications to high-spatiotemporal resolution rainfall data
(TRMM 3B42) over South America.

Keywords Complex networks e Predictability of extreme events ¢ South
american monsoon system ¢ Synchronization

15.1 Introduction

The analysis of the spatial structure of co-variability of climatic time series at
different locations forms an integral part of meteorological and climatological
research. Traditional techniques in this context are based on principal component
analysis (PCA) of the covariance matrix of the dataset under consideration. By
construction, such approaches only capture the first two statistical moments of the
distributions of the individual time series, and the resulting empirical orthogonal
functions (EOFs) thus do not describe the behavior of extreme events. By combining
a nonlinear synchronization measure with complex network theory, we introduce a
methodology that can fill this gap and show how it can be applied for climatological
analysis but also for statistical prediction of extreme rainfall events.

In the recent past, so-called climate networks have attracted great attention
as tools to analyze spatial patterns of climatic co-variability, complementarily to
traditional PCA-based techniques (e.g., Donges et al. 2009a,b, 2011; Gozolchiani
et al. 2011; Ludescher et al. 2013; Steinhaeuser et al. 2012; Tsonis and Roebber
2004; Tsonis and Swanson 2008; Van Der Mheen et al. 2013). Here, we show
how these approaches can be extended to capture the dynamical characteristics
of extreme events. The key idea of the methodology that shall be presented in
the following sections is to identify rainfall time series measured at different
locations with network nodes and represent strong synchronizations of extreme
events in these time series by network links connecting the respective nodes.
The climatological mechanisms driving the synchronization and propagation of
extreme rainfall events are assumed to be encoded in the topology of the resulting
climate network. Different aspects of this topology can be quantified by means
of suitable network measures, and upon providing climatological interpretations
of these network measures, we will show that the spatial patterns they exhibit
reveal the underlying climatological mechanisms (Boers et al. 2013). Furthermore,
using directed and weighted networks, we will show how this approach can be
used for statistical prediction of extreme events (Boers et al. 2014a), given that the
synchronization patterns are sufficiently pronounced.

While we restrict ourselves to present its application to satellite-derived rainfall
data, the methodological framework is more general and can in principle be applied
to analyze collective synchronization patterns of extreme events in many types
of complex systems. The methodology should be considered as a general data
exploration tool that can provide the basis for building scientific hypotheses on the
mechanisms underlying the synchronization of extreme events in large, interactive
systems.
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Fig. 15.1 Topography of South America and key features of the South American monsoon system,
including the main low-level wind directions, the Intertropical Convergence Zone (ITCZ), the
South Atlantic Convergence Zone (SACZ), and the South American Low-Level Jet (SALLJ).
The geographical regions southeastern South America (SESA), southeastern Brazil (SEBRA), and
Amazon Basin are referred to in the main text

15.2 Climatic Setting

The monsoon season in South America from December to February (DJF) is
characterized by a southward shift of the Intertropical Convergence Zone (ITCZ)
and by an amplification of the trade winds due to the differential heating between
ocean and land (Zhou and Lau 1998) (Fig. 15.1). These low-level winds transport
moist air from the tropical Atlantic ocean toward the tropical parts of the continent,
where they cause abundant rainfall. Substantial fractions of this precipitation are
recycled back to the atmosphere by evapotranspiration, and the winds carry the
water vapor farther west across the Amazon Basin toward the Andes. There, the
shape of the mountain range forces the winds southward toward the subtropics
(Marengo et al. 2012; Vera et al. 2006). The specific exit regions of this moisture
flow vary considerably from the central Argentinean plains to southeastern Brazil.
These variations are associated with frontal systems approaching from the South,
which are triggered by Rossby waves of the polar jet streams (Carvalho et al. 2010;
Siqueira and Machado 2004). A dominant southward component of the flow leads
to the South American Low-Level Jet (SALLJ) east of the Andes (Marengo et al.
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2004), which conveys large amounts of moisture from the tropics to southeastern
South America (SESA). The occurrence of this wind system is associated with huge
thunderstorms (so-called Mesoscale Convective Systems Durkee et al. 2009) in this
region (Salio et al. 2007). On the other hand, if the flow to the subtropics is directed
mainly eastward, it leads to the establishment of the South Atlantic Convergence
Zone (SACZ), a convective band that extends from the central Amazon Basin to
southeastern Brazil (SEBRA) (Carvalho et al. 2004). The oscillation between these
two circulation regimes leads to the so-called South American rainfall dipole and
constitutes the dominant mode of intraseasonal variability of the monsoon (Nogués-
Paegle and Mo 1997).

15.3 Data and Methods

Data We employ satellite-derived rainfall data from the Tropical Rainfall Measure-
ment Mission (TRMM 3B42 V7, Huffman et al. 2007) with 3 hourly temporal and
0.25° x 0.25° spatial resolutions, resulting in N = 48,400 time series with values
measures in mmh ™. Daily (3 hourly) extreme events are defined locally as points in
time for which the corresponding rainfall rate is above the 90th (99th) percentile for
the corresponding time series, confined to the monsoon seasons (DJF) from 1998 to
2012.

Event Synchronization The nonlinear synchronization measure we employ is
called Event Synchronization and was first introduced in Quian Quiroga et al.
(2002). It quantifies the synchronicity between events in two given time series x;
and x; by counting the number of events that can be uniquely associated with each
other within a prescribed maximum delay, while taking into account their temporal
ordering: Consider two event series {effL $1<p<i and {ej‘?}lsvsl containing [ events,
where ef‘ denotes the time index of the j-th event observed at grid point i. In order to
decide if two events ¢}’ and ¢} with ¢}’ > ¢} can be assigned to each other uniquely,

we first compute the waiting time df.; Y=ol — e; and then define the dynamical
delay:
pu=1 Gup+l  wv—1 v+l
e N [ (A
ri/;v — min u u 2 J] J/ (151)

We further introduce a maximum delay 7,,,x which shall serve as an upper bound
for the dynamical delay. If then 0 < df; V< ri’].‘ " and dg ¥ < Tomax, We count this as a
directed synchronization fromj to i:

SZVZ 1 if O<d5'v§‘l,'5v and dg'vftmax, (15.2)

0 else.

Directed Event Synchronization from j to i is given as the sum of all S};" (for fixed i
and j) (Boers et al. 2014a, 2015b):
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ES{r = ng”. (15.3)
J73Y

A symmetric version of this measure can be obtained by also counting events at
the very same time as synchronous and taking the absolute value of the dynamical
delay in Eq. (15.2),

g J U T =g and < o (15.4)
4 0 else,

and computing the corresponding sum:
sym | <MY
ES;™:=>"5;". (15.5)
v

A major advantage of this measure is that it allows for a dynamical delay between
events in the original time series x; and x;. In classical lead-lag analysis (using, e.g.,
Pearson’s correlation coefficient), this is not the case, since it only provides one
single delay between the two time series, namely, the time window by which the
time series x; and x; are shifted against each other. Since the various climatological
mechanisms underlying the interrelations between time series measured at different
locations cannot be assumed to operate on one single time scale, the temporal
homogeneity assumed by a classical lead-lag analysis is not justified. Furthermore,
the identification of the correct lead (or lag) is not a well-defined problem, as there
may be several maxima of the correlation value over the range of leads or lags.

Network Construction In the following, the notations ES for the measure or ES
for the corresponding similarity matrix will be used if a statement applies to both
versions of Event Synchronization. From the matrix ES, we derive networks by
representing its strongest entries by network links. It has to be assured that these
values are statistically significant. For this purpose, we construct 10,000 surrogates
of event time series preserving the block structure of subsequent events by uniformly
randomly distributing the original blocks of subsequent events and compute ES for
all possible pairs. From the resulting histogram of values, we obtain the threshold
T%% corresponding to the 5% confidence level. The link density of the network is
then chosen such that the smallest entry of ES that is represented by a network link
is above 7% In terms of the adjacency matrix A, this is captured by

ES; if ES; > 7%%,
Ay = 0 ' else ' (15.6)

Note that the values of ES have been assigned to the links as weights. Of course,
one can also set the corresponding entries of A to 1 in order to obtain an unweighted
network. In case of ES®™, the corresponding network will be undirected, while for
ESY", it will be directed.
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Network Measures On undirected and unweighted networks, we will consider
four different network measures: First, we consider betweenness centrality (BC),
which is defined on the basis of shortest network paths, i.e., the shortest sequences
of links connecting two nodes:

o (i
BC; := M . (15.7)

Zkk;ﬁi Okl

where oy, denotes the total number of shortest network paths between nodes k and /
and oy, (i) the number of shortest network paths between k and [ which pass through
node i. Since BC is a nonlocal centrality measure, we expect BC to exhibit high
values in regions which are important for the long-ranged, directed propagation of
extreme events.

Second, we are interested in the mean geographical distance (MD, Boers et al.
2013) of links at each node:

N
1 o
MD; := oG, ;Aijdlst(l, I (15.8)

where dist(i,j) denotes the great-circle distance between the grid points corre-
sponding to the nodes i and j. MD should show high values in regions where
extreme events occur synchronously with extreme events at remote locations and
thus quantifies similar aspects of the topology as BC, although not based on network
paths. Therefore, to confirm our interpretation of BC, we would expect this measure
to have a similar spatial distribution as BC.

Third, we employ the clustering coefficient, defined as the fraction of neighbors
of a given node that are themselves connected:

CC; := M (15.9)
2 ik AijAi

CC measures complementary aspects of the topology as compared to the previous

two measures and should be high in regions where extreme events exhibit large

spatial coherence as, for example, due to large thunderstorms.

Furthermore, we introduce a combination of these measures, called long-ranged
directedness (LD, Boers et al. 2013). For this purpose, we calculate the normalized
ranks of BC, CC, and MD, denoted by NRBC, NRCC, and NRMD, respectively,
and put

1 1
LD; := ENRBC,- + ENRMDi — NRCC,. (15.10)

The prefactors in this definition are motivated by the fact that BC and MD are
expected to quantify similar aspects of the network topology, while CC was
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introduced to estimate complementary properties of the network. We thus take
the mean of the normalized ranks of BC and MD and subtract the normalized
rank of CC. High values of LD should indicate regions which are important for
the long-ranged propagation of extreme events, while low values should indicate
regions where extreme events strongly cluster, but do not propagate over long spatial
distances.

On directed and weighted networks, we will consider the well-known in- and
out-strength, defined as

N N
g =34y ad =34 (15.11)
j=1

J=1

On the basis of these measures, we define the measure network divergence (A%,
Boers et al. 2014a) as the difference of in-strength and out-strength at each grid cell:

AT = S — o (15.12)

This measure can be used to identify source and sink regions of extreme events on
a continental scale. In order to investigate where extreme events originating from a
given source region go to, we define the strength out of a geographical region R into
anode i as

‘ 1
SMR) = WZAU, (15.13)

Jj€R

where |R| denotes the number of grid cells contained in R.

15.4 Results and Discussion

We will first use undirected and unweighted networks to show that the methodology
introduced above reveals climatic features which are consistent with the scientific
understanding of the South American monsoon system. This is mainly intended
as a proof of concept. Thereafter we will show that, using directed and weighted
networks, the approach can in certain situations be used to predict extreme events.

Climatic Analysis of Extreme Rainfall We compute the measures BC, MD, CC,
and LD for undirected and unweighted networks with a prescribed link density of
2 %. These networks are derived from ES®™ computed for daily events above the
90th percentile.

BC and MD show a very similar spatial distribution, with high values over the
ITCZ, the Amazon Basin, as well as at the eastern slopes of the Andes along
the entire mountain range (Fig. 15.2a, b). These regions are in fact crucial for the
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large-scale distribution of extreme events over the South American continent: The
low-level trade winds drive them from the tropical Atlantic toward the continent
(Zhou and Lau 1998), and upon a cascade of rainfall and evapotranspiration over
the Amazon Basin (Eltahir and Bras 1993), the winds force the moist air against the
Andean slopes, leading to so-called orographic rainfall (Bookhagen and Strecker
2008). The positioning of the branch of high BC and MD values from the western
Amazon Basin along the Andean slopes toward the subtropics corresponds to the
climatological location of the SALLIJ, which provides the moisture necessary for
extreme rainfall events (Marengo et al. 2004).

In contrast, the only regions over the mainland that exhibit high values of CC
(Fig. 15.2c) are SESA, where some of the largest thunderstorms on Earth occur
(Zipser et al. 2006), and the eastern coastal regions of the continent, which are
exposed to the landfall of the so-called squall lines (Cohen et al. 1995).

Fig. 15.2 Network measures for undirected and unweighted networks encoding the synchroniza-
tion structure of daily rainfall events above the 90th percentile of the monsoon season (DJF). (a)
Betweenness centrality (BC). (b) Mean geographical distance (MD). (¢) Clustering coefficient
(CC). (d) Long-ranged directedness
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Fig. 15.3 Network measures for directed and weighted networks encoding the temporally
resolved synchronization structure of 3 hourly rainfall events above the 99th percentile of the
monsoon season (DJF). (a) Network divergence (A.7). (b) Strength out of SESA (."(SESA)),
where SESA is defined as the spatial box extending from 35°S to 30°S and from 60°W to 53°W

By construction, LD shows high values where BC and MD both show high values
and particularly low values in most parts of SESA, where CC is high. However,
LD is also relatively high in SEBRA, concisely corresponding to the climatological
position of the SACZ (Carvalho et al. 2002, 2004). These high LD values indicate
the highly dynamical character of extreme events associated with this convergence
zone.

The spatial distributions of the four measures BC, MD, CC, and LD hence reveal
these important climatological features, and our interpretation of these network
measures is thus consistent with the understanding of the South American monsoon
system (Boers et al. 2013).

Prediction of Extreme Rainfall We construct directed and weighted networks
on the basis of ESY" (cf. Eq. 15.6), computed for 3 hourly events above the 99th
percentile. Network divergence A.¥ of the resulting network exhibits negative
values (i.e., source regions for extreme events) over the ITCZ and the Amazon
Basin, followed by pronounced positive values (i.e., sinks of extreme events) at the
eastern slopes of the Andes (Fig. 15.3a). Surprisingly, SESA, which was described
as one of the exit regions of the low-level flow from the tropics, is a pronounced
source region of extreme rainfall. In order to reveal where these events subsequently
propagate, we compute the strength out of the spatial box denoted by SESA in
Fig. 15.3 and infer that while some extreme events propagate northeastward, there
also exits a concise signature of targets extending from SESA to the eastern slopes
of the Central Andes in Bolivia. Thus, extreme rainfall in the Bolivian Andes should
be predictable from preceding events in SESA. In Boers et al. (2014a), the authors
revealed the interplay of frontal systems approaching from the South, the Andean
orography, and the low-level moisture flow from the tropics as responsible climatic
mechanism. This interplay leads to the opening of a wind channel conveying warm
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and moist air from the western Amazon Basin to SESA. These air masses collide
with cold air in the aftermath of the frontal system, leading to abundant precipitation.
The typical propagation trajectory of the associated rainfall clusters is dictated by
the northward movement of the frontal system and its alignment with respect to
the Andean mountain range. Based on these insights, a simple forecast rule is
formulated in Boers et al. (2014a), which predicts 60 % (90 % during positive phases
of the El Nifio Southern Oscillation) of extreme rainfall events at the eastern slopes
of the Central Andes.

15.5 Conclusion

In this chapter, we showed how complex networks can be employed to reveal spatial
patterns encoding the dynamical synchronization of extreme rainfall events and
how this can be used for climatic analysis as well as to estimate the predictability
of extreme rainfall. We constructed networks on the basis of synchronization of
extreme rainfall events in South America and showed that combining the net-
work measures betweenness centrality, mean geographical distance, and clustering
allowed to identify the main features of the South American monsoon system.
Furthermore, we showed that a directed network approach can be applied to reveal
typical propagation patterns of extreme rainfall events. Specifically, a pathway from
southeastern South America to the Central Andes was revealed, which provides the
basis for predicting extreme events in the Central Andes.

Further Reading Similar approaches to the techniques described in this chapter
have been taken to study spatial patterns of extreme rainfall in the Indian monsoon
system (Malik et al. 2012; Stolbova et al. 2014). The methodology introduced here
has also been applied to reveal the specific synchronization pathways associated
with the two main circulation regimes of the South American monsoon described in
Sect. 15.2, indicating that the Rossby waves responsible for frontal systems in fact
control extreme event synchronization over the entire South American continent
(Boers et al. 2014c). Directed networks have in addition been used to identify the
geographical origins of extreme rainfall events in the main hydrological catchments
along the Andean mountain range in view of their potential predictability (Boers
et al. 2015b). Furthermore, the techniques presented here can be employed to com-
pare different datasets and in particular to evaluate the dynamical implementation of
extreme events in global and regional climate models (Boers et al. 2015a). While all
these approaches are static in the sense that networks are constructed for the entire
time frame available, in Boers et al. (2014b) it is shown how this can be generalized
to a dynamical analysis using sliding windows. In that study, it was revealed that
the network clustering of strong evapotranspiration events strongly depends on the
phase of the El Nifio Southern Oscillation.



15 Complex Network Approach to Investigate Extreme Rainfall 173

Acknowledgements This work was developed within the scope of the IRTG 1740/TRP
2011/50151-0, funded by the DFG/FAPESP, and the DFG project “Investigation of past and
present climate dynamics and its stability by means of a spatio-temporal analysis of climate data
using complex networks” (MA 4759/4-1).

References

Boers N, Bookhagen B, Marwan N, Kurths J, Marengo J (2013) Complex networks identify spatial
patterns of extreme rainfall events of the South American monsoon system. Geophys Res Lett
40(16):4386-4392. doi:10.1002/grl.50681, http://doi.wiley.com/10.1002/grl.50681

Boers N, Bookhagen B, Barbosa HMJ, Marwan N, Kurths J, Marengo J (2014a) Prediction of
extreme floods in the Eastern Central Andes based on a complex network approach. Nat
Commun 5:5199. doi:10.1038/ncomms6199

Boers N, Donner RV, Bookhagen B, Kurths J (2014b) Complex network analysis helps to identify
impacts of the El Nifilo Southern Oscillation on moisture divergence in South America. Clim
Dyn (online first). doi:10.1007/s00382-014-2265-7

Boers N, Rheinwalt A, Bookhagen B, Barbosa HMJ, Marwan N, Marengo JA, Kurths J (2014c)
The South American rainfall dipole: a complex network analysis of extreme events. Geophys
Res Lett 41(20):1944-8007. doi:10.1002/2014GL061829

Boers N, Bookhagen B, Marengo J, Marwan N, von Sorch JS, Kurths J (2015a) Extreme rainfall
of the South American monsoon system: a dataset comparison using complex networks. J Clim
28(3):1031-1056. doi:10.1175/ICLI-D-14-00340.1

Boers N, Bookhagen B, Marwan N, Kurths J (2015b) Spatiotemporal characteristics and synchro-
nization of extreme rainfall in South America with focus on the Andes mountain range. Clim
Dyn (online first). doi:10.1007/s00382-015-2601-6

Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM  rain-
fall, and relief variations along the Eastern Andes. Geophys Res Lett 35(6):L06403.
doi:10.1029/2007GL032011, http://www.agu.org/pubs/crossref/2008/2007GL032011.shtml

Carvalho LMYV, Jones C, Liebmann B (2002) Extreme precipitation events in Southeastern South
America and large-scale convective patterns in the South Atlantic convergence zone. J Clim
15(17):2377-2394

Carvalho L, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form,
persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J
Clim 17(1):88-108. http://journals.ametsoc.org/doi/pdf/10.1175/1520-0442(2004)017<0088:
TSACZI>2.0.CO;2

Carvalho LMYV, Silva AE, Jones C, Liebmann B, Silva Dias PL, Rocha HR (2010)
Moisture transport and intraseasonal variability in the South America monsoon system.
Clim Dyn 36(9-10):1865-1880. doi:10.1007/s00382-010-0806-2, http://www.springerlink.
com/index/10.1007/s00382-010-0806-2

Cohen JCP, Silva Dias MAFS, Nobre CA (1995) Environmental conditions associated with
Amazonian squall lines: a case study. Mon Weather Rev 123(11):3163-3174. http://cat.inist.
fr/?7aModele=afficheN&cpsidt=3697315

Donges JF, Zou Y, Marwan N, Kurths J (2009a) Complex networks in climate dynamics. Eur Phys
J Spec Top 174(1):157-179

Donges JF, Zou Y, Marwan N, Kurths J (2009b) The backbone of the climate network. EPL
(Europhys Lett) 87(4):48007

Donges JF, Schultz H, Marwan N, Zou Y, Kurths J (2011) Investigating the topology of interacting
networks — theory and application to coupled climate subnetworks. Eur Phys J B 84(4):635-651

Durkee JD, Mote TL, Shepherd JM (2009) The contribution of mesoscale convective
complexes to rainfall across subtropical South America. J Clim 22(17):4590-4605.
doi:10.1175/2009JCLI2858.1, http://journals.ametsoc.org/doi/abs/10.1175/2009JCLI2858.1


http://doi.wiley.com/10.1002/grl.50681
http://www.agu.org/pubs/crossref/2008/2007GL032011.shtml
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2
http://www.springerlink.com/index/10.1007/s00382-010-0806-2
http://www.springerlink.com/index/10.1007/s00382-010-0806-2
http://cat.inist.fr/?aModele=afficheN&cpsidt=3697315
http://cat.inist.fr/?aModele=afficheN&cpsidt=3697315
http://journals.ametsoc.org/doi/abs/10.1175/2009JCLI2858.1

174 N. Boers et al.

Eltahir EAB, Bras RL (1993) Precipitation recycling in the Amazon basin. Q J R Mete-
orol Soc 120(518):861-880. doi:10.1002/qj.49712051806, http://doi.wiley.com/10.1002/qj.
49712051806

Gozolchiani A, Havlin S, Yamasaki K (2011) Emergence of El Nifio as an autonomous component
in the climate network. Phys Rev Lett 107(14):148501. doi:10.1103/PhysRevLett.107.148501,
http://link.aps.org/doi/10.1103/PhysRevLett.107.148501

Huffman G, Bolvin D, Nelkin E, Wolff D, Adler R, Gu G, Hong Y, Bowman K, Stocker
E (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multi-
year, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38-55.
doi:10.1175/THM560.1

Ludescher J, Gozolchiani A, Bogachev MI, Bunde A, Havlin S, Schellnhuber HJ (2013) Improved
El Nifio forecasting by cooperativity detection. Proc Natl Acad Sci 110(29):11742-11745

Malik N, Bookhagen B, Marwan N, Kurths J (2012) Analysis of spatial and tempo-
ral extreme monsoonal rainfall over South Asia using complex networks. Clim Dyn
39(3):971-987. doi:10.1007/300382-011-1156-4, http://www.springerlink.com/index/10.1007/
s00382-011-1156-4

Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the
Andes as derived from the NCEP-NCAR reanalyses: characteristics and temporal variability. J
Clim 17(12):2261-2280

Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA, Carvalho LMYV,
Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM
(2012) Recent developments on the South American monsoon system. Int J Clim 32(1):1-21

Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during
summer. Mon Weather Rev 125(2):279-291

Quian Quiroga R, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method
to measure synchronicity and time delay patterns. Phys Rev E 66(4):41904

Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over Southeastern
South America and their relationship with the South American low-level jet. Mon
Weather Rev 135(4):1290-1309. doi:10.1175/MWR3305.1, http://journals.ametsoc.org/doi/
abs/10.1175/MWR3305.1

Siqueira JR, Machado LAT (2004) Influence of the frontal systems on the day-to-day convection
variability over South America. J Clim 17(9):1754—1766. http://journals.ametsoc.org/doi/abs/
10.1175/1520-0442(2004)017<1754:10TFS0O>2.0.CO;2

Steinhaeuser K, Ganguly AR, Chawla NV (2012) Multivariate and multiscale dependence in the
global climate system revealed through complex networks. Clim Dyn 39(3—4):889-895

Stolbova V, Martin P, Bookhagen B, Marwan N, Kurths J (2014) Topology and seasonal evolution
of the network of extreme precipitation over the Indian subcontinent and Sri Lanka. Nonlinear
Process Geophys 21:901-917

Tsonis AA, Roebber PJ (2004) The architecture of the climate network. Phys A Stat Mech Appl
333:497-504. doi:10.1016/j.physa.2003.10.045, http://www.sciencedirect.com/science/article/
pii/S0378437103009646

Tsonis AA, Swanson KL (2008) Topology and predictability of El Nifio and La Nifia networks.
Phys Rev Lett 100(22):228502

Van Der Mheen M, Dijkstra HA, Gozolchiani A, Den Toom M, Feng Q, Kurths J, Hernandez-
Garcia E (2013) Interaction network based early warning indicators for the Atlantic MOC
collapse. Geophys Res Lett 40(11):2714-2719. doi:10.1002/grl.50515

Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud RD, Gochis D, Gutzler D, Lettenmaier D,
Marengo JA, Mechoso CR, Nogues-Paegle J, Silva Dias P, Zhang C (2006) Toward a unified
view of the American monsoon systems. J Clim 19(20):4977-5000. http://journals.ametsoc.
org/doi/pdf/10.1175/JCLI3896.1

Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020-
1040

Zipser EJ, Cecil DJ, Liu C, Nesbitt SW, Yorty DP (2006) Where are the most intense thunderstorms
on Earth? Bull Am Meteorol Soc 87(8):1057-1071. doi:10.1175/BAMS-87-8-1057, http://
journals.ametsoc.org/doi/abs/10.1175/BAMS-87-8-1057


http://doi.wiley.com/10.1002/qj.49712051806
http://doi.wiley.com/10.1002/qj.49712051806
http://link.aps.org/doi/10.1103/PhysRevLett.107.148501
http://www.springerlink.com/index/10.1007/s00382-011-1156-4
http://www.springerlink.com/index/10.1007/s00382-011-1156-4
http://journals.ametsoc.org/doi/abs/10.1175/MWR3305.1
http://journals.ametsoc.org/doi/abs/10.1175/MWR3305.1
http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(2004)017<1754:IOTFSO>2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(2004)017<1754:IOTFSO>2.0.CO;2
http://www.sciencedirect.com/science/article/pii/S0378437103009646
http://www.sciencedirect.com/science/article/pii/S0378437103009646
http://journals.ametsoc.org/doi/pdf/10.1175/JCLI3896.1
http://journals.ametsoc.org/doi/pdf/10.1175/JCLI3896.1
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-87-8-1057
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-87-8-1057

	15 A Complex Network Approach to Investigate the Spatiotemporal Co-variability of Extreme Rainfall
	15.1 Introduction
	15.2 Climatic Setting
	15.3 Data and Methods
	15.4 Results and Discussion
	15.5 Conclusion
	References


