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A B S T R A C T

Regionalization and pooling stations to form homogeneous regions or communities are essential for reliable
parameter transfer, prediction in ungauged basins, and estimation of missing information. Over the years,
several clustering methods have been proposed for regional analysis. Most of these methods are able to quantify
the study region in terms of homogeneity but fail to provide microscopic information about the interaction
between communities, as well as about each station within the communities. We propose a complex network-
based approach to extract this valuable information and demonstrate the potential of our approach using a
rainfall network constructed from the Indian gridded daily precipitation data. The communities were identified
using the network-theoretical community detection algorithm for maximizing the modularity. Further, the grid
points (nodes) were classified into universal roles according to their pattern of within- and between-community
connections. The method thus yields zoomed-in details of individual rainfall grids within each community.

1. Introduction

Reliable and accurate information about precipitation is essential
for most hydrological studies. For example, precipitation observations
are required for the design of hydraulic structures, flood estimation and
forecasting, assessment of water availability, or climate impact studies.
However, in most situations, raingauges are scarce, requiring knowl-
edge about how precipitation characteristics at neighboring stations are
related. These interrelationships can be viewed in a statistical sense
(e.g. by applying correlation analysis), in a physical sense (as in dy-
namical meteorology), or in a topological sense (as in complex network
analysis). Knowledge of these interrelationships will be crucial for
various purposes, including (1) applying interpolation/extrapolation
techniques to generate rainfall at locations where raingauge measure-
ments are not available (Yang et al., 2015), (2) filling gaps in historical
rainfall records using available rainfall observations at neighboring
stations (Jha et al., 2015), (3) determining the optimal density and
locations for the installation of new raingauges (Mishra and Coulibaly,
2009; Pardo-Igúzquiza, 1998), and (4) analysing regional flood fre-
quency (Hassan and Ping, 2012; Smith et al., 2015; Zrinji and Burn,
1994, 1996).

Even though there is a plethora of methods available for identifying

homogeneous regions, such as clustering algorithms (Agarwal et al.,
2016; Hsu and Li, 2010), principal component analysis (Darand and
Mansouri Daneshvar, 2014), region-of-influence approach (Zrinji and
Burn, 1994, 1996), or multiple regression (Sivakumar et al., 2015),
there are some important challenges which need to be addressed.

A common assumption in studies (Razavi and Coulibaly, 2013;
Salinas et al., 2013) dealing with interpolation/extrapolation, missing
values and prediction in ungauged basins (PUB) is that the variables of
interest, such as precipitation characteristics, at nearby points are more
closely related than those at distant points, as described by (Tobler,
1970) in his ‘First Law of Geography’. This assumption is also the
foundation of geostatistics, which in turn is fundamental to many
classical approaches to spatial data analysis and interpolation
throughout hydrology and other geoscientific disciplines. While this
assumption is often reasonable, it may not hold in every situation,
especially in regions with complex topography (Jha et al., 2015). In
such areas, statistics of rainfall recorded at neighboring stations can
significantly vary due to the high topographic gradients (Ozturk et al.,
2018) and, hence, changes in rainfall patterns between them
(Berndtsson, 1988; Li et al., 2014; Niu, 2013; Özger et al., 2010).

A significant disadvantage of these methods is that the selection of
factors for identifying the similarity in rainfall patterns is highly
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subjective. They rely on the preconceived notion of the existence of
linear relationship between the factors that influence the precipitation
in a region. For instance, in PCA method the subjectivity is introduced
in terms of extraction method, rotation method, number of components
to be retained etc. For more details refer to Saxena et al., 2017.

More importantly, the traditional methods for pooling stations
within homogeneous regions are not capable of unraveling the role of
each raingauge station within the community. This includes the inter-
actions within the community, the role of the stations, and the strength
and number of inter- and intra-community connections.

The main aim of this paper is to address this last point by proposing
a network-based approach for unravelling the role of each node in a
community. This microscopic analysis is essential to understand the
role of each of the member stations of the community and is very useful
in many applications. For example, by knowing the connections and
their strength, it is possible to reduce the uncertainty of predictions at
ungauged locations by including only those stations that have strong
connections in that community. Similarly, the reliability of filling gaps
in observational time series can be improved by identifying the stations
that share strong connections with that particular station. The relative
importance of the stations in the community will also help in under-
standing the connection between the communities and is particularly
useful for selecting stations that share characteristics with more than
one community.

In the context of connections within rainfall systems, recent devel-
opments in network theory, especially regarding complex networks,
have been found useful for identifying the spatial connections in rainfall
(Malik et al., 2012). Steinhaeuser et al. (2010) explored the utility of
complex networks to analyze climate data, i.e., air temperature, pres-
sure, relative humidity and perceptible water. They used the WalkTrap
community detection algorithm to identify communities. They con-
cluded that these communities have a climatological interpretation and
that alterations in community structure can be an indicator of climatic
events. Tsonis et al. (2011) applied complex networks and modularity
based community detection to observed and simulated model data and
concluded that the complexity of the system condenses into small in-
teracting components called communities. This approach provided in-
formation about the nature of different climate subsystems. Jha et al.
(2015) demonstrated the use of the clustering coefficient, a complex
network based measure (Stolbova et al., 2014), on two rainfall net-
works in Australia. They attempted to relate the strength of spatial
connections in rainfall to topographic and rainfall properties, towards
identifying dominant factors governing spatial connections and for of-
fering a better physical interpretation on spatial rainfall variability.
Eustace et al. (2015) identified community structures by proposing
local community neighborhoods ratio algorithm and showed that the
algorithm detects well-defined communities in networks by a wide
margin. Conticello et al. (2017) applied the Louvain community de-
tection algorithm to identify clusters of rainfall stations using the
concept of event synchronization and Self Organizing Maps. Even
though the study of Halverson and Fleming (2015) on streamflow re-
gionalization is not directly relevant for rainfall, it showed that the
choice of the community detection algorithm does not strongly impact
the community structure.

All above-mentioned studies have used complex network based
community detection algorithm to identify homogenous regions but
little attention has been paid to the different characteristics or roles of
each of the member stations of a community. Although Halverson and
Fleming (2015) have identified the high priority stations, based on high
betweenness centrality values, but have not discussed the role of other
stations. This study shows that the microscopic analysis of homo-
geneous regions provides additional insights into the behavior and
dynamics of single stations within the homogeneous region, which can
be vital for many engineering and water management purposes.

This study builds on emerging ideas in the very fast-evolving field of
complex network theory and contributes to work in hydro-monitoring

system design. Although studies in different fields, such as physics
(Quian Quiroga et al., 2002b; Quiroga et al., 2000) or neurology
(Rubinov and Sporns, 2010; Zhou et al., 2007), have seen immense use
of complex network theory, event synchronization, and Z-P space, our
study is the first combined application of these methods in hydrology to
date. It clearly demonstrates the large potential of these methods in
hydrology.

As advancement to the research in the application of complex net-
works in rainfall network analysis, we use a network-based measure to
provide a comprehensive analysis of the stations in a community and
their roles. For this, we apply the concept of cartographic representa-
tion of networks by Guimera and Amaral (2005). The proposed ap-
proach is demonstrated using the synthetic network and then applied to
the Indian Precipitation gridded precipitation dataset. The paper is
organized in the following manner. Section 2 describes the basic aspects
of network construction, and network measurement and Section 3
briefly discusses the methods used in the study. The application of the
methodology and the subsequent results obtained are discussed in de-
tail in Section 4. The conclusions are reported in Section 5.

2. Methods

2.1. Network definition

A network or a graph is a collection of entities (nodes, vertices)
interconnected by lines (links, edges) as shown in Fig. 1. These entities
could be anything from humans defining social networks (Arenas et al.,
2008), computers in web networks (Zlatić et al., 2006), neurons of the
brain (Pfurtscheller and Lopes da Silva, 1999; Zhou et al., 2007),
streamflow stations defining hydrological networks (Halverson and
Fleming, 2015; Sivakumar and Woldemeskel, 2014) to raingauge sta-
tions defining climate networks (Stolbova et al., 2014; Malik et al.,
2012; Rheinwalt et al., 2016).

Formally, a network or graph is defined as an ordered pair G =
(N, E), containing a set of nodes N = {N1, N2, ….NN} together with a set
E of edges {i, j} which are 2-element subsets of N. In this work, we
consider undirected and unweighted graph (G), where only one edge
can exist between a pair of nodes and self-loops of the type {i, i} are not
allowed. Hence, edges simply show connections between nodes, and
each edge can be traversed in either direction. This type of graph can be
represented by the symmetrical adjacency matrix (Stolbova et al.,
2014)

= ⎧
⎨⎩

∉
∈

A
i j E
i j E

0{ , }
1{ , }i j,

(1)

Fig. 1 is a simple example of an undirected and unweighted net-
work. In general, large graphs with non-trivial topological character-
istics, used to represent real systems, are called complex networks. To

Fig. 1. The topology of the sample network used to explain the network con-
struction and universal role of a node. Different colors represent different
communities, i.e., community 1 (red) and community 2 (blue). Nodes 4 and5
are the hybrid nodes connecting their community to the other community.
Nodes 1 and 6 are the hubs of their respective community. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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define whether a link between two nodes exists, any similarity measure
can be used, such as correlation (Donges et al., 2009; Jha et al., 2015),
synchronization (Conticello et al., 2017; Malik et al., 2012; Stolbova
et al., 2016) or mutual information (Paluš, 2018). Depending on the
topological structure of the network, groups of nodes can be pooled
together forming communities (Jha et al., 2015).

2.2. Event synchronization

We use event synchronization (Stolbova et al., 2014) to define
whether a link between two nodes exists. Event synchronization (ES)
has been specifically designed to calculate nonlinear relations between
timeseries with events defined on them. A simple algorithm proposed
by (Quian Quiroga et al., 2002a) can be used for any time series for
which we can define events, such as single-neuron recordings, epi-
leptiform spikes in electroencephalograms (EEG), heartbeats, stock
market crashes, or rainfall events. When dealing with signals of a dif-
ferent character, the events could be defined differently in each time
series, since their common cause might manifest itself differently in
different time series. ES has advantages over other time-delayed cor-
relation techniques (e.g., Pearson lag correlation), as it uses a dynamic
(not fixed) time delay (Agarwal et al., 2018, 2017). The latter refers to a
time delay that is adjusted according to the two time series being
compared, which allows its application to different situations. Another
advantage of ES is that it can be applied to non-Gaussian data (Stolbova
et al., 2014; Tass et al., 1998). Having its roots in neuroscience, ES only
considers events beyond a threshold and ignores the absolute magni-
tude of events, which could be a challenge to incorporate in future,
work.

A number of modifications have been proposed to the basic algo-
rithm, considering various issues such as boundary effects or bias to-
ward the number of events (Agarwal et al., 2017; Rheinwalt et al.,
2016). The modified algorithm proposed by (Rheinwalt et al., 2016)
can be explained as follows: An event above a threshold α percentile
occurs in the signals x(t) and y(t) at times tl

x and tm
y where

l = 1, 2, 3, 4…Sx, m= 1, 2, 3, 4…Sy and within a time lag ± τlm
xy which

is defined as (Stolbova et al., 2014)

= − − − −+ − + −τ min t t t t t t t t{ , , , }/2lm
xy

l
x

l
x

l
x

l
x

m
y

m
y

m
y

m
y

1 1 1 1 (2)

where Sx and Sy are the total number of events (greater than the
threshold α) in the signals x(t) and y(t), respectively. This definition of
the time lag helps to separate independent events, which in turn allows
to take into account the fact that different processes are responsible for
the generation of events. To count the number of times an event occurs
in x(t) after it appears in y(t) and vice versa, C(x|y) and C(y|x) are
defined as follows:

∑ ∑=
= =

C x y J( | )
l

S

m

S

xy
1 1

x y

(3)

and

=
⎧

⎨
⎪
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< − <

=J
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else

1 0

0 ,
xy

l
x

m
y

lm
xy

l
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m
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2

(4)

C(y|x) is defined accordingly, and from these quantities we obtain:

= +
− −

Q C x y C y x
S S

( | ) ( | )
( 2)( 2)

xy
x y (5)

Qxy is a measure of the strength of the event synchronization be-
tween x(t) and y(t). It is normalized to ⩽ ⩽Q0 1xy . This implies that
Qxy=1 for perfect synchronization between x(t) and y(t).

2.3. Network construction

To construct a rainfall network, each grid cell is considered as a
node and links between each pair of nodes are setup based on the
statistical relationship between them. The similarity measure used is
the ES which gives a Qmatrix (Eq. (5)). Applying a certain threshold (θ)
on the Q matrix (Eq. (5)), we yield an adjacency matrix (rewriting Eq.
(1))

=
⎧
⎨
⎩

⩾
A

if Q θ
else

1,
0, ,i j

i j i j
Q

,
, ,

(6)

Here, =θ percentile95i j
Q th
, is a chosen threshold, and Ai,j=1 denotes

a link between the ith and jth nodes and 0 denotes otherwise. The ad-
jacency matrix represents the connections in the rainfall network. In
this study, we use an undirected network, meaning we do not consider
which of the two synchronized events happened first, in order to avoid
the possibility of misleading directionalities of event occurrences be-
tween nodes that are topographically close to one another.

2.4. Network measures

To analyze and quantify the topological features of complex net-
works, a large number of network measures have been introduced
(Blondel et al., 2008; Malik et al., 2016). We use the within-module
degree Z-score (Z) and the participation coefficient (P) (Guimera and
Amaral, 2005) to investigate the role of individual nodes within a
community. Z identifies hubs and non-hubs within the community.
Hubs are nodes with a significantly larger number of links compared to
the other nodes in the network. P is a measure of the diversity of the
connections between individual nodes and identifies to which extent a
node has intra-community or inter-community links.

The within-module degree (Zi or Z-score) is a within-community
version of degree centrality (total number of link of any node) and
shows how well a node is connected to other nodes in the same com-
munity. It is estimated as (Guimera and Amaral, 2005)

=
−

Z
K K

σi
i s

k

i

si (7)

where Ki is the total number of links (degree) of node i in the com-
munity si, Ksi is the average degree of all nodes in the community si, and
σksi is the standard deviation of K in si Since two nodes having the same
Z-score may play different roles within the community, this measure is
often combined with the participation coefficient Pi.

The participation coefficient (Pi) compares the number of links of
node i to nodes in all communities with the number of links within its
own community. We define the (Pi) of node i as (Guimera and Amaral,
2005)

∑ ⎜ ⎟= − ⎛
⎝

⎞
⎠=

P
k
k

1i
s

N
is

i1

2

j

M
j

(8)

where kisj is the number of links of node i to nodes in community sj, and
ki is the total number of links (degree) of node i.NM represent the
number of communities in the network. The participation coefficient of
a node is therefore close to one if its links are uniformly distributed
among all the communities, and zero if its entire links are within its
own community because in later case =K Kis ij hence Pi = 0.

2.5. Community detection

Complex networks often show subsets of nodes that are densely
interconnected. These subsets are called communities. The community
structure of a complex network provides insight into the network
(Girvan and Newman, 2002). For instance, different communities
within a network may have very different properties compared to the
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averaged properties of the complete network.
There exist several community detection approaches aiming at

stratifying the nodes into communities in an optimal way (see
(Fortunato, 2010) for an extensive review). The question which com-
munity detection algorithm should be used is difficult to answer.
However, it has been found that the choice of the community detection
algorithm has a small impact on the resultant communities in geo-
physical data science studies (Halverson and Fleming, 2015). In this
study, we use the Louvain method which maximizes the modularity to
find the optimal community structure in the network. The optimal
community structure is a subdivision of the network into non-over-
lapping groups of nodes, which maximizes the number of within-group
edges and minimizes the number of between-group edges (Blondel
et al., 2008; Rubinov and Sporns, 2011).

Modularity is defined, besides a multiplicative constant, as the
number of edges falling within groups minus the expected number in an
equivalent network with edges placed at random. Positive modularity
values suggest the presence of communities. Thus, one can search for
community structures by looking for the network divisions that have
positive, and preferably large, modularity values (Newman, 2004).
Modularity (M) is calculated as:

∑= ⎢
⎣
⎢ − ⎥

⎦
⎥M

m
A

k k
m

δ C C1
2 2

( )
i j

ij
i j

i j
, (9)

where Aij represents the number of edges between i and j, ki = ∑jAij is
the sum of the number of the edges (degree) attached to vertex i, Ci is
the community to which vertex i is assigned, the δ− function δ(u, v) is
1 if u= v and 0 otherwise, and m= 1/2 ∑ijAij.

Eq. (9) is solved using the two-step iterative algorithm proposed by
Blondel et al. (2008), also known as the Louvain method. The first step
consists in optimizing the modularity by permitting only a local mod-
ification of communities; in the second step, the communities identified
are pooled to assemble a new network of communities. High modularity
networks are densely linked within communities but sparsely linked
between communities. The algorithm stops when the highest mod-
ularity is achieved. The algorithm was implemented using the Brain
Connectivity Toolbox (BCT), provided by (Rubinov and Sporns, 2010),
and is available at https://sites.google.com/site/bctnet/.

2.6. Z-P space approach

Following the approach proposed by Guimera and Amaral (2005),
we calculate for each node the participation coefficient Pi and the
within-module degree Zi, and plot all nodes onto the Z-P space. Both
measures are calculated once the network communities have been de-
termined (Guimera and Amaral, 2005; Guimera et al., 2007). Guimera
et al. (2007) propose to divide the Z− P space into seven classes
(R1–R7) which express the different roles of the nodes (Table 1). In the
first step, the nodes are broadly categorized as hubs or non-hubs using
the within-module degree (Z). Nodes with ⩾Z 2.5 are classified as
community hubs and nodes with <Z 2.5 as non-hubs. At the second
level, the hub and non-hub nodes are further characterized using the
participation coefficient. Hence, each node is assigned to one of these
seven classes.

Nodes in the classes R1 and R5 with P≈ 0 have almost all links
within the own community. Since class R5 have provincial hubs
(Table 1) which contain both intracommunity and intercommunity
links, the limit on the participation coefficient (P ≈ 0) helps to identify
nodes that have almost all intracommunity links. These nodes with
almost all intracommunity links (P ≈ 0) are local centers in the region
and can only be selected as a representative node of the community
(Halverson and Fleming, 2015).

Nodes in the classes R2 and R3 are peripheral and satellite con-
nectors respectively (Table 1). Both the class contains hybrid non-hub
nodes which generally connect two different communities. The only Ta
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difference between R2 and R3 is that R3 nodes have more inter-
community links (outside of its own community).

Similarly, R6 nodes represent the nodes that have many inter-
community links but are hubs. In the given community we interpret
them as hybrid hubs which have a maximum connection outside of its
own community. Kinless nodes (R4) have the greatest proportion of
links outside the community and are interpreted as wrongly assigned
nodes in the community. If there exist many R4 nodes in the community
a reformation of the communities or reallocation of such nodes to ap-
propriate community is suggested. The nodes in class R7 maintain
homogeneous links with all the communities. We surmise that such
nodes may not be clearly associated with a single community hence
termed as the global hubs or global connectors (nodes connecting many
different climate sub-systems).

The above characterization of nodes is important as it helps in un-
derstanding their specific roles in terms of non-hubs, hubs, local cen-
ters, hybrid nodes, global hubs. In the context of climate systems, local
centers correspond to nodes which are important for local climate
phenomena, while bridges correspond to nodes which connect different
subsystem of climatology, leading to non-local interaction (tele-
connections).

Using the classification of Table 1, Fig. 2 shows the Z− P space for
the sample network of Fig. 1 and the assigned R classes. Node 1 is a hub
in community 1, having all of its nodes within the community, and
hence can be considered as a representative station. Node 4 of com-
munity 1 (non-hub) has intercommunity links and thus falls in the R2
class. For community 2, station 6 is a representative node with all links
within the community, and the non-hub node 5 has intercommunity
links falling in class R2. There is no kinless node (R4 and R7) in both
communities.

If there exists a node fully unsynchronized to the other nodes in the
network, i.e. there are no links to other nodes, the proposed Z− P
approached will detect this station given its unique characteristics. This
unsynchronized station will lie at the origin of Z− P space and will fall
in a community on its own. As an extreme example, one might imagine
that in a meteorological sub-region, characterized by fine-scale con-
vective thunderstorms with sparse raingauge coverage, precipitation
event synchronization across all raingauges in that sub-region would be
poor and each station would form a separate community.

3. Model application

The method was tested on a gridded rainfall dataset for two reasons:
i) the availability and the access to raingauge data is limited, and ii)
gridded datasets provide an effective platform to understand the pre-
cipitation dynamics. Owing to the assumptions underlying the spatial
interpolation, the gridding process used to build the dataset might af-
fect the relationships between nodes. However, these effects can be
neglected considering the extent of the study area. The high-resolution
(0.25°× 0.25°) daily gridded rainfall data (Pai et al., 2015) was de-
veloped by the Indian Meteorological Department (IMD) for a spatial
domain of 66.5°E to 100°E and 6.5°N to 38.5°N covering the mainland
region of India. The gridded data was generated from the observed data

of 6995 gauging stations across India using spatial interpolation for the
period 1901–2013. Several studies in the past using the same dataset
have reported such as downscaling (Lakhanpal et al., 2017; Sehgal
et al., 2016) and rainfall variability (Krishnamurthy and Shukla, 2000).
This shows that the data are highly accurate and capable of capturing
the spatial distribution of rainfall over the country. In this study, out of
total 17415 grid stations, 4631 stations were identified for which
continuous rainfall data for 63 years (Jan 1951 to Dec 2013) was
available without any missing values.

The rainfall network is constructed (as explained in Section 2.3) by
extracting an event series from 4631 raingauges (Fig. 3), i.e., by ap-
plying a threshold we identify extreme rainfall events in the given time
series (Agarwal et al., 2017; Rheinwalt et al., 2015). We define extreme
events as precipitation that is greater than the 95th percentile at that
station. The 95th percentile is a good compromise between having a
sufficient number of events at each location and a rather high threshold
to study heavy precipitation. Next, we compute the Q (Eq. (5)) between
each pair of 4631 rainfall grid points. Applying a threshold ( =θ 95i j

Q th
,

percentile) on the Q matrix (Eq. (5)) yields an adjacency matrix (Eq.6),
representing the connections in the rainfall network. In this study, we
use an undirected network, meaning we do not consider which of the
two synchronized events happened first, in order to avoid the possibi-
lity of misleading directionalities of event occurrences between rain
gauges that are topographically close to one another. After formation of
the rainfall network, we aimed to obtain a small set of communities
representing relevant sub-processes of the rainfall network. In this
study, we apply Louvain algorithm (Section 2.5) on the constructed
network to unravel the community structure.

The resultant community structure is the rainfall network mapped
in Fig. 3.

The obtained community structure (Fig. 3) shows some similar
patterns to those provided by the Indian Institute of Tropical Meteor-
ology (Vinnarasi and Dhanya, 2016) and (Malik et al., 2016). It is also
important to emphasize that the formation of the regions using complex
networks is based on a cluster of actual connections, rather than on our
traditional criteria of geographic proximity, nearest neighbors, regional
patterns, and linear correlations.

Table 2 shows the geographical and statistical interpretation of the
resultant community which includes the mean, standard deviation, and
coefficient of skewness of the precipitation distribution for each com-
munity. Higher mean precipitation shows a greater total amount of
precipitation, a larger standard deviation shows a stronger variation of
data for the collecting period, and a larger coefficient of skewness in-
dicates more extreme (monthly) precipitation events (Hsu and Li,
2010).

Considering statistical properties, community 4 (Fig. 3), which
covers almost all of the greenest and most mountainous regions of India
(northeastern India), has the highest monthly mean (150.89mm), the
largest variation (178.92mm) and low skewness (1.6) of precipitation
in the region (Table 2). Meanwhile, community 5 (Fig. 3), covering dry
and lowland areas (northwestern India), shows the lowest monthly
mean (48.26 mm) with lower variation. Community 6 (western coast-
line) shows the greatest skewness along with high variability. One
possible reason for the high variability and skewness could be that these

Fig. 2. Nodes of the sample network of Fig. 1
plotted onto the Z-P-space. Nodes 1 and 6 (both
encircled) are the representative stations for
community 1 and 2, respectively. Nodes 4 and 5
in community 1 and 2, respectively, are the only
hybrid nodes and are thus in the R2 class. All
other nodes have only intracommunity links and
are assigned to the R1 class. Many stations have
the same values for Z and P and are thus on top
of each other in the R1 class. Nodes 1 and 6 are
the local center (P≈ 0) and are thus in the R5
and R1 class respectively.
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regions are near to both coastlines and are low-lying areas with two
different climate regimes (arid and humid). Community 3 (southeastern
India) shows a high coefficient of skewness (1.91) and second high
monthly rainfall (105.01 mm) and variability (154.69mm). All the
communities show the positive coefficient of skewness, which indicates
precipitation with a long tail toward high values.

Community 7 (mountainous region) shows low monthly precipita-
tion mean, moderate variability and high skewness. In South India, both
communities 1 and 2 (Fig. 3) almost have similar rainfall characteristics
but are differentiated by topological (elevation, land, coastline) fea-
tures.

Further, using a node-to-node connection approach (Guimera et al.,
2007; Guimera and Amaral, 2005) we explore the microscopic details of
each individual station within the community. We fit all raingauges of
the rainfall network in the ZP space (Fig. 4) according to the estimated
network measures (Section 2.4) of the within-module degree (Z) and
participation coefficient (P).

Fig. 4 shows the Z-P space plot for each community (C1 to C7) se-
parately. Table 3 shows the percentage of each class of stations in each
community. From Fig. 4 and Table 3, we find that none of the com-
munities has a kinless node (R4 class node), i.e., no wrongly assigned
node. This explains the robustness of the method (edge-betweenness)

used for clustering.
It can be seen that all the communities (C1 to C6) have a dominance

of hybrid nodes in their respective community except for community 7,
which shows the dominance of nodes with intra-community links. This
observation falls along the expected lines, as the Indian sub-continent’s
precipitation shows the vast variability in topography, climate di-
versity, etc. The results are quite different from those shown by Agarwal
et al. (2017), for German regions. In Germany, the raingauge stations
were mostly connected by intra-community links, indicating more
homogeneity in the precipitation compared to Indian precipitation.

As explained in Section 2.6, stations with the almost all (P ≈ 0)
intra-community links can be considered a spatially representative
station of the community. We argue that such stations have climato-
logical properties (rainfall time series) that are representative of the
other members of their respective communities (Halverson and Fleming
2015). This information has significant importance in big data analysis
and uncertainty analysis, as the information from the entire community
is available in the form of the representative station.

Further analyzing the Z-P space, we see that the eastern coastline
region (C1) to some extent shows good interconnectedness (high
number of R1 and R2) and also does not show any hubs (R5 to R7) in
the region. This suggests that rainfall in this region is more localized

Fig. 3. (a) Community structure of precipitation data in the rainfall network resulting from the Louvain algorithm. (b) Elevation map of the Indian continent.

Table 2
Summary of geographical and statistical analysis for each individual community. Communities formed by maximizing the modularity using Louvain algorithm.
Elevation map for India is presented in the Fig. 3b.

C. No. Number of stations Monthly mean (mm) Stand. Deviation (mm) Skewness Remarks

1 214 79.70 98.29 2.04 Smallest community, eastern coastline, low elevation region, warm, humid climate
regime

2 876 76.30 104.45 2.16 Mild elevation, semi-arid climate regime (south)
3 1028 105.01 154.69 1.91 Moderate elevation, equatorial grassland (south) semi-arid climate regime
4 865 150.89 178.92 1.60 High elevation, subtropical humid climate regime (Himalayan foothills and northeast)
5 433 48.26 79.39 2.71 Moderate elevation, semi-arid climate regime (Central India)
6 843 75.50 127.89 2.79 Low elevation, northwest and western coastline, arid and warm, humid climate regime

(northwest)
7 372 66.26 85.41 2.48 Very high elevation, alpine climate regime
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and does not show any long-range connections. This is in congruence
with the general understanding that the eastern coastline region is
dominated by the northeastern (NE) monsoonal rainfall while the rest
of the country receives rainfall from southwestern (SW) monsoons (Jain
et al., 2013).

The mild and moderate-elevation inland regions of India (C2, C3,
C5, and C6) show negligible intracommunity links (R1) compared to
other high-elevation regions (C4 and C7) and low-elevation regions
(C1). These mild and moderate-elevation regions (C2, C3, C5, and C6)
are strongly dominated by hybrid stations (R3 and R6) sharing some
common dynamics with other regions. For instance, C2 (Southeast) and
C3 (Central-East) have very few nodes in the R1 class; the majority of
nodes fall in R2 and a significant amount in R3 class stations. This
shows that the southeastern and central-eastern regions of the country
have short-range and long-range connections. A significant number of

R6 class stations reveal that the long-range connections are prevalent
over these regions. The ability to detect both short-range and long-
range connections is one of the advantages of the complex network
approach used in this study, compared to commonly used geostatistical
methods which are based on the assumption of a semi-variogram
having a decreasing correlation with increasing distance.

Similarly, the western coastline (C6) of India is also dominated
equally by R2 and R3 class stations representing short- and long-range
connection dynamics in the region. On the contrary, the central-western
region (C5) of India is strongly dominated by only R3 class-type stations
having a maximum number of links outside the community. This sug-
gests that central-western (C5) regions have no intra-community links
to stations. The above observations fall along the expected lines since
westerlies enter in India from the West and travel to an entirely dif-
ferent part. Because of a lack of sufficient orographic barriers, we do

Fig. 4. Role-specific representation of node behavior in the Z− P space (Section 2.6) plotted for each community (C1 to C7). Within-module degree (Z) differentiates
between hubs and non-hubs and the participation coefficient (P) quantifies the percentage of intra-/inter-community links. Blue colored dots in Z-P space in a
particular community represent the raingauge station (node) of that particular community. The significance of each R class is explained in Section 2.6. Many stations
have the same values for Z and P and are thus on top of each other in the different R class. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 3
Summary of the total number of each type of R class stations in the induvial community. The significance of each R class is described in Section 2.6.

C. No. Explanation of R class P(%)= Percentage of stations in particular R class in each community

R1 R2 R3 R4 R5 R6 R7

1 Eastern coastline, low-land region having no hubs, mostly dominated by intracommunity
links and short-range connections

33.2 61.7 5.1 0 0 0 0

2 Mild-elevation inland region with connector hubs shows the dominance of both intra-
community and inter-community links

4.3 51.6 44.1 0 0 .9 0

3 Eastern-central region with moderate elevation shows a lower number of intra-community
links to stations

0.9 59.8 39.3 0 0 .7 0

4 Northeastern region of India shows all kinds of connections. Intra-community, inter-
community, hubs, non-hubs, global hubs, etc

13.0 44.7 40.7 0 0 1.3 .5

5 No intra-community links, highly dominated by hybrid stations; community shows short-
range connections

0 14.5 85.5 0 0 0 0

6 Negligible intra-community links, dominated by inter-community links and hybrid
stations

.1 50.2 49.5 0 0 .1 0

7 No hubs, the community has all (ultra-) peripheral nodes that have links within the
community, hence well isolated

78.5 18.3 3.2 0 0 0 0

P(%)= (total stations in any R class of community C/total stations in community C) × 100.
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not see any localized rainfall in this region.
The northeastern region of India (C4) shows a unique kind of pat-

tern, with a significant number of intra-community links, inter-com-
munity links, connector hubs and global hubs. This region has a suffi-
cient number of orographic barriers, which helps to accumulate more
localized rainfall, represented by short-range connections. Hence, some
of the rainfall features in this area are regionally bound and short-
range. This region also shows a significant number of inter-community
links owing to its long-range connections with the easterlies moisture
movement from the C5 regions.

The Himalayan region (C7) shows dominance of R1 class stations,
representing a very high degree of interconnectedness in the region. In
other words, it suggests that this region receives localized rainfall,
having short-range connections. Also, it can be said from the results
that this region features a different climatology characterized by sea-
sonal snow and a colder climate than the rest of the regions.
Furthermore, it is entirely possible that this region may have connec-
tions to regions beyond what is considered in the present study.

From the above analysis, we infer that Z-P space is a useful tool to
provide more insight into the qualitative and quantitative connections
between the nodes within and outside a community. It also shows the
strength of the connections between the communities and is useful in
understanding how extreme events in one community affect the other
regions. The physical reasoning for the classification of the nodes into
seven classes is inline with the general understanding of the pre-
cipitation dynamics in India.

4. Conclusion

This study proposed a novel, complex, network-based approach for
quantifying the role of a single (rainfall) station within homogeneous
regions, which is of great interest in regionalization studies, estimating
missing information, etc. The study used a network information-theo-
retical approach known as Z-P space for understanding the qualitative
and quantitative aspects of the members of a community. The Z-P ap-
proach categorizes the members into different classes based on the re-
lative roles they play in the community and their strength of connec-
tions within and outside the community. The utility of the method was
demonstrated using a synthetic case and then applied to the real-world
case of the Indian rainfall network. The entire Indian rainfall network
was divided into seven communities, and each community was ana-
lyzed using the Z-P approach. The results from the Z-P space approach
provided important information such as how the communities are
connected within themselves and with others. It was observed that the
high-elevation, northern part of India was disconnected from other
regions (communities). On the other hand, the southern peninsular
region had strong intra-community links as well as inter-community
links. It was also observed that the central and eastern parts of the
country had many connector hubs, indicating that these regions have
long-range connections with other communities. The stations from the
northeastern regions of the country, interestingly, have strong con-
nections with other communities. The results of the study have sig-
nificant implication in identifying key node locations in climate systems
which play a major role in affecting the climate in the given commu-
nity.
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