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ABSTRACT

The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However,
quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interre-
lationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme
events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as
a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two
nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We
use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with
respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme
events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th
percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the
lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze
event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0072520

Extreme precipitation networks are constructed over a river basin
using event synchronization (ES) and edit distance (ED). Edit
distance is an alternative to event synchronization accounting
for the sequences and the magnitude of events. Network-based
measure degree is employed to understand the spatial synchro-
nization pattern of the extreme precipitation in the Ganga river
basin (GRB). The influence of the topography and rainfall char-
acteristics on the extreme precipitation networks is also quan-
tified. The proposed study can estimate the impact of artificial
boundaries, thereby better understanding the extreme precipita-
tion network’s topology and spatial risk quantification of extreme
events.

I. INTRODUCTION

Extreme events are of great societal interest as they may lead
to many meteorological hazards that majorly affect lives and eco-
nomic assets.1,2 The evolution of such events in hydrology is non-
uniformly distributed with time resulting in irregularly spaced data
series. Traditionally, linear measures like Pearson and Spearman
correlation are recognized as effective and robust estimators to
quantify linear dependency between any two variables in irregu-
lar time series.3 The Pearson correlation coefficient computes the
linear dependency by looking into entire distribution of the data.
For an extreme event-like data (tail part of the distribution), its
application becomes suboptimal.4 Likewise, other linear approaches
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such as wavelet analysis and Fourier transform are insufficient to
capture nonlinear interrelationships.5 As a result, defining a princi-
pled nonlinear approach is required to analyze extreme event time
series, particularly when the dependency between event time series
across locations is explored.

Numerous methods are available to study nonlinear dynami-
cal behavior, such as recurrence,6,7 phase difference,8,9 Kolmogorov
entropy,10,11 or mutual information (MI).12,13 However, by definition,
extreme events are those that occur rarely and are separated by long
periods. So, defining a suitable distance measure that can aid in
analyzing the dynamics of extreme event-like time series becomes
important in such instances. In the last decade, event synchro-
nization (ES) has gained popularity, particularly in climate science
studies. The strengths of ES include capturing dynamic time-delays
between various spatially distributed processes and thereby deter-
mining typical spatiotemporal patterns in climate systems and syn-
chronization strength. Malik et al. used ES to analyze the extreme
precipitation events (EPEs) in the Indian Monsoon System.14 Boers
et al. conducted a similar study to characterize the extreme pre-
cipitation synchronicity in the South American Monsoon System.15

Later, Agarwal et al. proposed a multi-scale event synchronization
method by combining the wavelet transform and ES.16 Furthermore,
Kurths et al. used wavelet-based ES to unravel the spatial diversity of
Indian rainfall teleconnections.17 An overview by Moreno and Perc
complements nicely the hugely important role that network science
has played in the analysis of various extreme events.18

Event-like time series, a discrete event series generated by a
point process, can be examined in their unaltered state. As a mea-
sure of similarity, Victor and Purpura proposed a distance metric
for calculating the distance between two spike trains (binary event
sequences).19 Later, Hirata and Aihara developed a method for trans-
forming a spike train into a time series known as edit distance.20

Then, this method was used by Suzuki et al. to construct a recur-
rence plot by measuring a distance between marked point processes
to analyze financial data.21 Later, several studies employed similar
distance measures for analyzing irregularly sampled paleoclimate
data.22,23 Recently, we proposed a modification of the edit distance
(ED) to investigate extreme event-like time series dynamics by
integrating a nonlinear cost function.6 The robustness of the ED
measure is demonstrated by several prototypical examples and real
flood event series constructed from discharge data of the Missis-
sippi River in USA. However, to the best of the authors’ knowledge,
there is no study comparing the ES and ED-based extreme precipi-
tation networks over a river basin with a diverse climate24 and with
complicated topography like the Ganga river basin (GRB) in India.

The GRB is highly vulnerable to EPEs due to its complex topog-
raphy and altitude-dependent climate. Spatiotemporal changes in
the EPEs at a basin-scale are crucial for preventing and mitigat-
ing water-related disasters and providing critical information for
successful water resource management. EPEs over the Himalayan
region are considered to be caused by a combination of thermody-
namics and orographic uplifting.25 However, some studies argue that
topography has no direct influence on precipitation.26 Conversely,
Houze identified topographic variables as fundamental contrib-
utors to precipitation fallout.27 Topography significantly impacts
precipitation, but the relationship between topographical charac-
teristics and precipitation is poorly understood.28,29 Bharti et al.

made an effort to study the EPEs in association with the elevation
and found that the frequency and intensity of EPE have exhibited
an inverse relationship with elevation.30 Furthermore, basin-scale
studies investigating the influence of topography on EPEs are rare.
Therefore, there is a need to study the impact of topographic mea-
sures on the EPEs over the river basin having complex terrain
toward quantifying the variability of EPEs.

In the present study, event synchronization and edit distance
are compared to characterize the EPEs in the Ganga river basin;
this involves constructing extreme precipitation networks over the
basin. The topology of the resulting networks is quantified using
graph theory-based measures such as network degree. Finally, a sta-
tistical comparison is made between the network-based measures
and topographic measures to quantify the impact of topography on
EPEs.

II. STUDY AREA AND DATASET

A. Study area

The Ganga river is the longest in India and is located in the
northern part of the country, covering the western and central
Himalayas. The GRB is a transboundary basin and lies in India,
China, Nepal, and Bangladesh. The present study is carried out over
the region falling in India only due to gauge-based observations. The
spatial extent of GRB falling in India covers 21°6′ N to 31°21′ N
and 73°2′ E to 89°5′ E in latitude and longitude directions, respec-
tively. An undulating terrain pattern characterizes the topography
of GRB. The elevation ranges from about 7000 m north to less than
100 m above mean sea level in the south [Fig. 1(a)]. This complex
topography leads to high spatiotemporal variability in precipita-
tion and diverse climate classifications ranging from semi-tropical to
semi-arctic.30 The GRB’s typical average annual rainfall ranges from
300 mm at the western side to 3700 mm at the eastern end [Fig. 1(b)].
The GRB experiences intense cyclone activity during the monsoon
season resulting in loss of life and infrastructure. Flow in the basin is
majorly driven by the precipitation coming from the Indian summer
monsoon (June to September) and snowmelt from the Himalayas
during the Spring season (March to May).

B. Dataset

In the present study, we use the gridded daily precipitation
(mm) data with a high spatial resolution of 0.25° × 0.25° cover-
ing the entire GRB. The gridded dataset was generated from a
network of 6995 gauging stations across India using the inverse dis-
tance weighted interpolation technique proposed by Shepard.31 The
dataset was developed by the Indian Meteorological Department
(IMD)32 and can be retrieved from IMD’s website.33 We use daily
data for 22 years (1998–2019) to examine the EPEs over the GRB. In
the past, several studies used the same dataset for various hydro-
meteorological applications. These include extreme precipitation
analysis,34 precipitation regionalization,35 intrinsic predictability of
Indian summer monsoon,36 spatiotemporal variability of precip-
itation over India,37 and spatial diversity of Indian precipitation
teleconnections,17 among others. Various applications confirm that
the data are highly accurate and reliable in capturing the spatial
distribution of precipitation over the GRB.
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FIG. 1. (a) Geographical location of the Ganga river basin in India showing elevation of the study area in meters above mean sea level. The elevation map is prepared
by using the shuttle radar topography mission digital elevation model. This figure is generated using ArcGIS 10.6 (https://www.esri.com/en-us/arcgis/products/arcgis-pro).
(b) Spatial distribution of mean annual precipitation (in mm) over the period 1998–2019 based on IMD observations.

III. METHODOLOGY

In this work, we use two event-based nonlinear similarity mea-
sures, event synchronization (ES)38 and edit distance (ED),19 to study
the extreme precipitation pattern across the GRB. In ES and ED, we
consider events or sequences of events at one grid point and mea-
sure the strength of synchronicity with the other grid points. In this
way, we construct the similarity matrix for all the grid points. To
understand the underlying pattern of extreme events in more detail,
elevation and precipitation seasonality need to be studied. Addi-
tionally, to the timing of events, ED also considers the similarity of
amplitude variations.

A. Edit distance

Victor and Purpura developed a specific distance metric to
measure the similarity between the two spike trains based on the cost
to transform one spike sequence into the other one.19 Hirata and
Aihara extended this idea for converting a spike train into a real-
valued time series and named it edit distance.20 Edit distance was
used for marked point processes to study the recurrence properties
of exchange tick data of foreign currencies,21 recurrence analysis of
irregularly sampled data,39 and extreme event-like data.6

We consider the event series at every grid point as a spike
train. Let us consider two grid points i and j to find the similarity
between the events; we transform one spike train into another by
using the following operations: shifting in time, change in ampli-
tude, and deletion/insertion [Fig. 2(a)]. Each of these operations is
assigned with a cost. We use a combination of all three elementary
operations and find the minimum path to convert one segment to
another. The minimum transformation cost is defined as40

D(Si, Sj) =
∑

(l,m)∈C

{

p0||t
i
l − tj

m||+p1||L
i
l − Lj

m||
}

+ p2(|I| + |J| − 2C),

(1)

where C is a set of pairs involved in the shifting process; the first
term on the right-hand side of Eq. (1) corresponds to the shifting
of an event l by time tj − tm and change in amplitude by Ll − Lm,
and the second term involves the deletion/insertion of events. ti

l and
t
j
m denote the time of events and Li

l and L
j
m denote the amplitude of

events.
In edit distance analysis, we have three cost parameters,

namely, p0, p1, and p2, which are associated with the cost of shift-
ing in time, change in amplitude, and cost of deletion/insertion,
respectively. In the present study, we adopted the definition of the
cost parameters proposed by Ozken et al.39,41 The first cost param-
eter p0 provides the weightage for shifting in time for two event
series and is calculated as p0 = M

total time , where M is the number
of events. So, when we calculate the transformation cost between
two events series, we count the total number of events in two grid
points divided by the total time, and it could be considered an
event rate. The dimension of this parameter is 1

time . The second
cost parameter is responsible for the change in amplitude, given by
p1 = M−1

∑M−1
t ||xi−xi+1||

, where xi is the amplitude of ith event in the

data. The dimension of this parameter is 1
Length . The cost of dele-

tion/insertion p2 is set to be 1,

D(Si, Sj) =
∑

(l,m)∈C

{

p0|| ti
l − tj

m ||+p1|| Li
l − Lj

m ||
}

+ (|I| + |J| − 2C).

(2)

We apply the distance measure Eq. (2) for all the pairs of grid points
and store the value as a similarity matrix Rij.

In the present study, the cost of shifting in time p0 depends
on the number of events M. As we fixed the number of events
in each grid point, the relative contribution in every pair of event
series would be the same. Hence, the cost for shifting operation
(in time + difference in amplitude) is mainly influenced by the
parameter p1. Unlike p0, the value of Pp will change depending on
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FIG. 2. Schematic illustration of (a) the edit distance method—segment Si transformed to Sj by following the path from S1 to S4 operations; the final cost is obtained by

minimizing all the possible combination. (b) The event synchronization—til and t
j
m are occurrence of events in the event series at grid point i and j, and T

ij
lm is the adaptive

time lag.

the difference in amount of rainfall. So, the final cost is mainly
influenced by parameter p1. ED works recursively, i.e., the shift-
ing operation is associated with the events of more or less similar
time and amplitude. So, in this way, ED can distinguish between
the events with small variations in time and amplitude and with
the events with a large difference in time and amplitude. This work
chooses ∼36 events (top 10 percentile in a year) for each grid point
and constructs the event series. The threshold value may differ from
grid to grid. In this way, we manage to find a way to reduce the bias
due to different event numbers.

B. Event synchronization

Event synchronization is a method to measure the synchronic-
ity between climate extremes like extreme precipitation42 or heat-
wave pattern.43 In precipitation network analysis, we consider each
precipitation grid point as a node. To measure the synchronicity of
events between two grid points i and j, let us consider an extreme
event l occurring at a timeti

l supposed to be synchronized with
another event m at grid point j at time t

j
mwithin a time lag ± T

ij
lm

[Fig. 2(b)], where T
ij
lm is a flexible time lag that adopts the density of

events (sparse events = larger lags, dense events = smaller lags) and
is expressed as follows:

T
ij
lm =

min
(

ti
l+1 − ti

l , t
i
l − ti

l−1, t
j
m+1 − t

j
m, tj

m − t
j
m−1

)

2
. (3)

Here, l = 1, 2, 3, . . . , Si and m = 1, 2, 3, . . . , Sj are the number of
events at ith and jth grid points, respectively. We count the

coincidence of events at grid points i and j with the following
scheme:39

Jij =











1 if 0 < ti
l − t

j
m < T

ij
lm,

1/2 if ti
l = t

j
m,

0 else.
(4)

The synchronization is measured by counting the weights
of the synchronized events in both the time series c(i|j) =

∑si
l=1

∑sj
m=1 Jij and vice versa: c(j|i) at the grid points i and j. Finally, the

strength of synchronization is defined as14

Qij =
c(i|j) + c(j|i)

√

(si − 2)(sj − 2)
, (5)

where Qij lies in the range of 0–1, where 1 implies the complete
synchronization and 0 the absence of synchronization. We use this
method for all pairs of grid points (i &= j) and obtain the similar-
ity matrix, which stores the strength of synchronization between
extreme precipitation at all grid points.

C. Study design to test the efficacy of ED and ES

Finding a suitable similarity measure is important to investigate
the interactions between different time series. However, when we
deal with event-like data, the available options of similarity measures
become very specific and have some limitations.

Kreuz et al. proposed a framework to compare the synchro-
nization measurements from different approaches.44 We adopted a
similar prototype system to study the interaction between two time
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series and their strength of synchronization for different coupling
values and is described as follows.

Consider two unidirectionally coupled Hénon maps with the
following equations:9

x1(i + 1) = 1.4 − x2
1(i) + bx2(i)x2(i + 1) = x1(i), (6)

y1(i + 1) = 1.4 − [µx1(i)y1(i) + (1 − µ)y2
1(i)] + by2y2(i + 1) = y1(i),

(7)

where x1 and x2 are the components of the drive system, y1 and y2

are the components of the response system, and µ is the coupling
coefficient that varies in range of 0–0.8. A similar model system
has been adopted in previous studies45–47 to investigate the direc-
tion of coupling. In the first step, the event series is constructed. To
do so, scan through x1 and y1 component and find the local max-
ima (x(ti) > x(ti±1)) and store the times tx

i , t
y
j , and amplitudes Lx

i ,
Lx

j (i = 1, 2, . . . , nx; j = 1, 2, . . . , ny), where nx and ny denote the
number of events. The local maxima procedure has been successfully
used to study event-like data.44,46,48

When the coupling is minimal [see x axis in Fig. 3(c)], the
similarity between two time series is less; hence the Q value is low
and simultaneously D value is high as the cost of transformation
is very high. As we increase the coupling parameter (µ), the value
of D decreases [Fig. 3(a)], and the value of Q increases [Fig. 3(b)].
We detected the first four transition points using change-point
detection,49 where abrupt changes in Q and D values are detected.
In the previous studies,45–47 the onset of identical synchronization
was found to start for µ ≥ 0.6. To confirm the direction of inter-
dependency, a mutual information (MI) estimator is used between
two time series x1 and y1. The original time series is considered in
the analysis but not the local maxima from the driver and response
system. Kraskov et al. proposed a method to compute mutual infor-
mation based on the k nearest neighbor.50 MI measure has less bias
and is robust against short time series.51 For readers who are unfa-
miliar with MI, refer to the study by Kraskov et al. for detailed
methodology.50

Interestingly, from Fig. 3, we observed that all transition points
lie early for relatively low coupling in ES [Fig. 3(b)] when compared
with the mutual information [Fig. 3(c)]. However, in the case of ED
[Fig. 3(a)], the transition points (vertical colored lines) are placed
when the coupling is relatively strong, i.e., the similarity between
two time series is high. The prototypical system shows that both ED
and ES are suitable enough to study the interdependence between
two event-like time series. Event series with almost coinciding events
but strong differences in amplitudes will be considered very simi-
lar by ES but more different by ED; less synchronous event series
with very similar amplitude variation can, in contrast, be considered
different by ES but more similar by ED. With the additional infor-
mation of amplitude in ED, it helps in capturing a more realistic
picture.

D. Network construction and network measure

We obtain the adjacency matrix by applying a certain threshold
upon the similarity matrix. In this study, the threshold is defined

FIG. 3. Detection of changes in the direction of coupling with coupling parameter
value (µ) ranging from 0 to 0.8 for (a) event synchronization (ES) and (b) edit
distance (ED) with (c) mutual information (MI). Vertical color lines represent the
transition in the direction of coupling. The black vertical line signifies the onset of
identical synchronization.

based on the link density [Eq. (8)],

ρ =
2E

(N(N − 1))
, (8)

where E is the number of edges and N is the number of nodes,
and the corresponding threshold τ = τ (ρ) is chosen. For ES, the
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adjacency matrix defined as

AES
ij =

{

1 if Qij > τ ,
0 else.

(9)

For the adjacency matrix, it defined as

AED
ij =

{

1 if Rij < τ ,
0 else.

(10)

For both ED and ES, we choose the threshold τ for an edge den-
sity of 0.05. In the previous climate network applications,14,52,53 a link
density of 0.05 satisfies a high similarity and retains the significant
links.

In the study of complex networks, there are multiple network
measures available based on the research question. Our research is
particularly interested in finding the grid points that show a simi-
lar pattern of extreme events. Accordingly, the node degree (k) of a
node i is calculated, indicating the number of connections with other
nodes in a network,

ki =

N
∑

j=1

Aij, (11)

where N is the number of nodes and Aij is the adjacency matrix.

E. Precipitation seasonality

In the following, we assess the difference in node degree (k)
obtained from event synchronization and edit distance, which can
be applied in understanding the difference in the topology of the
extreme precipitation network patterns. Feng et al. calculated the
first moment of area for monthly precipitation to derive the timing
of 50th percentile precipitation within a year [Fig. 4(a)].54 Later, sev-
eral studies35,55 used the same centroid concept to derive the timing
(Ti) of 50th percentile precipitation over different time scales.

The calculation of the long-term average timing is a two-step
procedure. We considered 22 years of data, and the median value
of precipitation is estimated for all the months [Fig. 4(a)]. Next,

the timing (Ti) was computed using Eq. (12) and is indicated in
Fig. 4(b),

Ti =

∑12
m=1 mpm

∑12
m=1 pm

, (12)

where m represents the month number from 1 to 12 and pm repre-
sents the corresponding precipitation amount during that particular
month.

IV. RESULTS AND DISCUSSION

We present the results in four categories: first, investigating
network characteristics of extreme precipitation; second, linking
network characteristics with precipitation seasonality; third, with
topographic variability; and finally, quantifying node importance
over GRB.

A. Network characteristics of extreme precipitation
over the Ganga river basin

Network characteristics are obtained by thresholding the sim-
ilarity matrix Qij for ES and Rij for ED. Network characteristics
depend on the choice of threshold τ . In the present study, we con-
strain the link density ρ = 2E

N(N−1) , where E gives the total number
of edges in the current network and the denominator is the num-
ber of all possible edges in the network (if fully connected), with
the number of nodes N and selecting the corresponding threshold
τ = τ (ρ).12 In both cases, we choose the threshold so that it corre-
sponds to 10% link density. The precipitation network comprises
nodes representing the time series of each grid point and the
edges showing statistically significant interdependencies between
the nodes.56

We compute the node degree for all the grid points in the GRB,
following the procedure described in Sec. III C. Figures 5(a) and 5(b)
present the spatial distribution of the degree of each node using edit
distance and event synchronization. We observe significant varia-
tions in the spatial distribution of node degree values across the
GRB. The grid points with high degree (more links) are more likely

FIG. 4. (a) Long-term average monthly precipitation time series for one grid point (red color). The box-plot statistics of each month are represented in gray color.
(b) Computation of the timing of 50th percentile precipitation (Ti) linked with the area of monthly precipitation. The vertical dotted line represents the timing of the peak
precipitation.
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to be found in the southwest part of the basin, while degree values
decrease toward the northeast part and periphery of the basin in
both ED- and ES-based networks. In general, a high degree of a node
(higher connectivity) indicates that the extreme precipitation data
at that grid point shares a piece of similar information with many
other grid points over the basin and is likely to have greater impact
on functioning of the network. Since similar information is shared,
it is not considered a unique one. On the other side, the grid point
with degree zero does not share similar information with any other
grid point.

The artificially imposed boundary (in this case, the Ganga river
basin border) may impact the estimated network measures because
spatial boundaries cut links that would connect the considered
region with outside regions. We use the boundary correction pro-
cedure suggested by Rheinwalt et al. to avoid spurious bias on node
degree arising from this boundary effect.57 We use the procedure
as follows; we construct 100 spatially embedded random networks
(SERNs) that preserve the position of the nodes in space and link
length probability depending on the spatial link length of the orig-
inal network. We compute the network measure for all the SERN
surrogates. The boundary effect is measured by taking the average

of the network measure for all the surrogates. The corrected net-
work measure is obtained by dividing the original measure with the
estimated boundary error for all the nodes. The corrected network
measure is dimensionless as it provides the network measure relative
to the expected value of a SERN.

Figures 5(c) and 5(d) present the spatial distribution of the
corrected degree value computed by edit distance and event syn-
chronization of each grid cell in the basin. We obtain the boundary
corrected degree for ED and ES [Figs. 5(a) and 5(b)]. In the case
of ED, we find high degree concentrated at a particular (south-
west) part of the basin. In contrast, the corrected degree value of the
ES-based network is varying all over the basin, but a high number
of nodes having high degree values are at the southwest part of the
basin.

By comparing the results of the ES and the ED networks, we
find a slight difference in the spatial distribution of degree val-
ues. The southwest part shows a high degree in the ED network
[Fig. 5(c)] and spreads out to the bay’s periphery. In the ES network
[Fig. 5(d)], the degree value follows a similar pattern as ED networks
but with lower degree values in the stronger connected region and
with a larger extension of this stronger connected region.

FIG. 5. Spatial distribution of node’s degree for (a) the edit distance and (b) event synchronization, and corrected degree for (c) the edit distance and (d) event synchronization.
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FIG. 6. Spatial pattern of the timing of 50th percentile precipitation for the
temporal window 1998–2019.

Therefore, by comparing Figs. 5(a)–5(d), we see that these
nonlinear methods efficiently capture the general network topology
without being affected by the artificial boundary.

B. Relationship between network characteristics and
precipitation seasonality

We quantify the centroid of the monthly precipitation dis-
tribution over the GRB to derive the timing of 50th percentile
precipitation (see Sec. III D). The timing is mainly during June to
August over the GRB (Fig. 6). The Himalayan region (north side)
receives its 50th percentile precipitation at the beginning of June,
and in contrast, in the middle of July over the plain region (south
region) and at the end of July over the northeast and deltaic region
(southwest region) of the GRB. To know if there is any statistical

FIG. 7. Relationship between the timing of 50th percentile precipitation and
elevation.

relationship between 50th percentile precipitation and elevation, we
consider the occurrence of rainfall and elevation (Fig. 7).

Next, we consider the relationship between the timing of 50th
percentile precipitation and the corrected node degree values for
ED and ES (Fig. 8). In both cases, grid stations with early timing
(before July) and intermediate timing (from July to mid-July) have
lower degree values, i.e., fewer connections, while stations with rel-
atively later timing have greater degrees varying from 0 to 2.7. For
ED, the relationship between the timing and degree is more apparent
than for ES due to the inclusion of the amplitude variations. Thus,
by comparing Figs. 8(a) and 8(b), ED could be a promising alter-
native to analyze event-like data by incorporating event time and
amplitude.

FIG. 8. Relationship between occurrences of peak precipitation and the connectedness between the grid points (degree) for the network constructed using (a) edit distance
and (b) event synchronization.
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C. Relationship between network characteristics and
topographic measure

We further consider the relationship between node degree and
elevation of each grid cell to quantify the influence of elevation on
the network topology (Fig. 9). The degree varies for the grid cells at
different elevations. For example, sites with low elevation (<1000 m)
have degree values largely ranging from 0 to 2.5 and from 0 to 2.1
in ED and ES, respectively, while the stations at intermediate to
high elevation tend to have fewer connections, i.e., low degree val-
ues (below 0.5 for ED and between 0.5 and 1 for ES). The degree in
ED-based networks [Fig. 9(a)] is relatively lower than for ES-based
networks [Fig. 9(b)] for stations located at elevations between 1000
and 6000 m.

The southwest of the GRB has moderate elevation and grid
points over that region receive precipitation during the Indian sum-
mer monsoon only [point A in Figs. 10(a) and 10(b)]. The north of
the GRB has the highest elevation compared to the rest of the basin
[Fig. 1(a)] and is mainly dominated by western disturbances58 dur-
ing December to May and receives its highest precipitation during
the Indian summer monsoon [point B in Figs. 10(a) and 10(b)]. As
a result, the timing of 50th percentile precipitation of the southwest
region is more compared to the northern region. The degree and
timing are low and the connectedness is limited to a few grid points
only in the north of the GRB [Figs. 10(c) and 10(d)]. In particular,
connections made by ED [Fig. 10(c)] provide additional informa-
tion as it includes amplitude as well. We find that grid points in
the southwest have a higher degree but not to the central part of
the GRB. The western and southwestern region receives less pre-
cipitation and has lesser spatiotemporal variability.37 As most of
the grid points in the southwest region receive similar information,
it has higher connectedness [Figs. 10(c) and 10(d)]. Interestingly,
the timing is the same across the central part and southwest of the
GRB (Fig. 6). The primary factor in getting a higher degree across
the southwest region is the elevation. As a result, ED connections
mostly lie in the same topographical region [Fig. 10(c)], whereas ES
links are going to another topographical region as well [Fig. 10(d)].

Therefore, by comparing Figs. 10(c) and 10(d), ED as a similarity
measure provides additional information in segregating the extreme
events originating during western disturbances and Indian summer
monsoon.

D. Quantifying node importance over GRB

In several studies of complex network dynamics and structure,
node importance is becoming a hot topic.3,59 Node importance is
evaluated and primarily researched regarding the network’s struc-
tural properties and application requirements. It is critical to identify
significant nodes to create effective networks. The essential nodes in
the network are a small number of particular nodes that have a con-
siderable impact on the network’s structure and function.60 There-
fore, we argue that those nodes of large importance might indicate
locations that are suitable for representing the overall precipitation
state/regime or for predicting the extreme events. Degree, closeness,
betweenness, clustering coefficient, weighted degree betweenness,
and other centrality measures have been developed to evaluate
node importance in complex networks.59 For a comparative under-
standing of node importance derived from the network constructed
using ED and ES, corrected degree values obtained over GRB are
used.

Figure 11 shows the spatial distribution of location and net-
work connections of the top 5% of the highest degree grid cells in
the ED [Fig. 11(a)] and ES-based network [Fig. 11(b)]. The 5% top
degree nodes infer that the time series at the grid stations in the
south and southwest region of the basin have more robust con-
nectivity than the rest of the stations in the GRB. Compared to
ED, in ES-based networks, important grid points are concentrated
in the outer southwest region of the basin [Fig. 11(b)]. Further-
more, we plotted the connections corresponding to this high degree
grid station to reduce the complexity in visualizing the interac-
tions. Theoretically and practically, identifying node importance in
complex networks is vital for enhancing network robustness and
invulnerability.

FIG. 9. Relationship between degree and elevation for the precipitation network constructed using (a) ED and (b) ES.
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FIG. 10. (a) Map of GRB showing points in the southwest and north and (b) line plot illustrating precipitation seasonality and their connections found using ED (c) and ES (d).

FIG. 11. Spatial distribution of the strongest 5% of nodes obtained over the GRB using (a) ED and (b) ES. All 1174 grid stations are plotted in the background in light gray
color. Red colored nodes indicate the top 5% degree nodes.
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V. CONCLUSION

In this study, 1174 daily precipitation records during
1998–2019 in the Ganga river basin are studied by their EPE network
characteristics. Two nonlinear methods, event synchronization and
edit distance, are used to compare the precipitation events. We
juxtapose the network topology resulting from the edit distance-
based network with the event synchronization-based network. The
network measure node degree found that the degree is decreasing
from the southwest to the northwest direction. As it is known that
the extreme precipitation patterns are influenced by complicated
topography, we quantify the variability of EPEs by investigating the
impact of topography on the EPEs across the basin. We find that the
connectivity of events is greatly affected by elevation. Our analysis
revealed an inverse relationship between elevation and the timing
of 50th percentile precipitation. The network-based degree suggests
that the event-like time series at the grid stations located at the
southwest region of the basin are more connected compared to the
rest of the basin. When an extreme event occurs across sub-basins
under this area, it contributes to a higher flooding risk.

Furthermore, as a similarity measure, edit distance includes
amplitude variations in the pairwise tests. In our work, the degree
pattern using ED indicates the node of high similarity in terms of
their amplitude and occurrence. Precipitation extreme events with
almost coinciding events but significant differences in amplitudes
will be considered very similar by event synchronization but more
different by edit distance. More minor synchronous extreme events
with very similar amplitude variation can, in contrast, be considered
different by event synchronization but more similar by edit distance.
One of the primary purposes of this research is to understand the
spatial distribution of EPEs in a specific area. Although we illus-
trated the preliminary results about the spatial connectivity of EPEs,
there is still a need to understand the propagation of EPEs at differ-
ent spatial and temporal scales. Also, a statistical significance testing
is required for more credible network interpretation. We recognize
that the application of network theory in hydrological systems is still
in its infancy. We believe that current research on applying complex
networks to analyze the extreme precipitation pattern will improve
our understanding of the spread of extreme events in the GRB.
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