Linear and non-linear time series analysis of vibration in friction brakes

*B. A. Wernitz¹, N. P. Hoffmann²

¹ Honeywell Bremsbelag GmbH
Glinder Weg 1, 21509 Glinde b. Hamburg, Germany
boris.wernitz@honeywell.com
www.jurid.de

² Hamburg University of Technology,
Institute of Mechanics and Ocean Engineering, Eissendorfer Str. 42,
21073 Hamburg, Germany
norbert.hoffmann@tuhh.de
www.mum.tu-harburg.de

Key Words: Friction Induced Vibrations, Time Series Analysis, Microscale Contact.

ABSTRACT

Analysis and predictive modeling of brake squeal is still a challenge in the automotive industry. Large efforts are being made to reduce the squeal propensity. To understand the mechanics behind brake squeal either reduced order tribological and / or structural models or finite element models comprising the complete brake system or even the entire vehicle corner are developed and analyzed. The system is usually investigated with respect to linear stability of the steady sliding state. Although recent research in this field has been able to yield substantial progress (see e.g. [1,2,3]), the limitation of most approaches lies in the restricted representation of the high dimensional phenomena of the friction interface of brake pads and brake disc and often also in neglecting or not considering the effects of the – often even unknown - nonlinearities in the finite amplitude vibration state.

The present study therefore addresses the topic of brake squeal from a different perspective. Instead of analyzing a given numerical model for instability or limit cycles, experimental data of a brake system in non-squealing conditions is subjected to an experimental data analysis. Both techniques of spectral analysis as well as of nonlinear time-series analysis [6] are applied. Although the critical uncomfortable frequencies of brake squeal are of course limited to the audible range, recent findings hint at tribological and structural mechanism at much higher, i.e. ultrasonic, frequencies playing a role in brake squeal (see e.g. [4,5]). The sample rate of the conducted measurements was therefore chosen to allow spectral components of up to about 80 kHz to possibly also reveal particle respectively wear patch dynamics, sized in microscales. To reach a better understanding of the specific mechanisms in the contact interface analyses taking into account the different time-scales are performed.
On the time scale of seconds the spectral analysis based on the broadband friction vibration data shows mainly steady-state behaviour in terms of the short time FFT spectra. Examining the data on the basis of recurrence plots reveals strong disruptions and therefore non-stationarity on short time-scales (Fig. 1). Apparently the irregular microscale motions on these short time-scales leave their footprints in the recurrence analysis while in their entirety they result in a stationary spectrum on slower time scales.

In addition phase space reconstruction techniques have been applied to determine, if the overall dynamics shows signs of low-dimensional deterministic dynamics (Fig. 2).

REFERENCES

