Erratum: “Complex network from time series based on phase space reconstruction” [Chaos 19, 033137 (2009)]

Zhongke Gao and Ningde Jin
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, People's Republic of China

(Received 31 December 2009; accepted 3 February 2010; published online 12 March 2010)

[doi:10.1063/1.3332246]

In this erratum, we correct a mistake (reference omitted) and make some corrections to our recently published article [Chaos 19, 033137 (2009)].

Reference omitted. We regret that a key reference was omitted from our recently published article. In the first paragraph of Sec. V, the second sentence should read: “In order to effectively study the bifurcation in complex network, based on the viewpoint of laminarity, we define the network laminarity (NLAM) from the complex network perspective as follows.” The reference omitted is the following Ref. 29. We sincerely apologize to those authors and readers for our oversight.

Other corrections. We would like to make the following correction before the last sentence of Sec. VI, “Note that the well-known recurrence plot uses phase space reconstruction to form a recurrence plot (or recurrence matrix), and the recurrence matrix also can be viewed as adjacent matrix. So there may exist a similarity between recurrence plot and our network construction method to some extent. But it should be pointed out that the threshold critically determines the topological structure of complex network and the method for choosing threshold usually employed in recurrence plot is different from the one we used in our paper. Since we employ the cluster property of complex network to determine the threshold and then proceed to construct network, the constructed network attractors corresponding to different dynamic systems all can be well visualized by the Kamada–Kawai spring embedding algorithm; the assortative mixing and clustering coefficient-betweenness correlations both can well reflect the network clustering property associated with the UPOs of the chaotic system. That is also why, compared with recurrence plot, our approach is more effective for uncovering the fluid structure of gas-liquid two-phase flow.”