Characterization of focal EEG signals: A review

U. Rajendra Acharya, Yuki Hagiwara, Sunny Nitin Deshpande, S. Suren, Joel En Wei Koh, Shu Lih Oh, N. Arunkumar, Edward J. Ciaccio, Choo Min Lim

Non-focal (NF) and focal (F) EEG signals are analyzed. The CAD system to aid in the detection of F EEG signals is discussed. Nonlinear features can effectively capture concealed patterns and rhythms contained in the EEG signals. Overall, it was found that the CAD system will be useful to clinicians in providing an accurate and objective paradigm for localization of the epileptogenic area.

Contents

1. Introduction .. 291
2. Data types used for analysis .. 291
3. Computer-Aided detection system 292
 3.1. Pre-processing .. 293
 3.2. Extraction of nonlinear features 293
 3.2.1. Detrended fluctuation analysis (DFA) 293
 3.2.2. Entropies .. 293
 3.2.3. Fractal dimension (FD) 293
 3.2.4. Hjorth ... 293
 3.2.5. Hurst exponent ... 293
 3.2.6. Kolmogorov complexity 293
 3.2.7. Largest Lyapunov exponent (LLE) 293
 3.2.8. Lempel–Ziv complexity (LZC) 293

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Epilepsy is a persistent brain disorder that can afflict anyone at any age [1]. It is defined as the occurrence in a patient of two or more unprovoked seizures. Seizures occur due to the excessive electrical discharges of brain cells. As stated by the World Health Organization, currently, nearly 50 million people globally suffer from epilepsy [2]. This condition affects the patient socially as well as economically [2]. It has been reported that epilepsy contributes to approximately 0.6% of the global burden of disease. Nonetheless, patients suffering from epilepsy can lead a normal life with the appropriate treatment. Therefore, it is crucial to be able to correctly diagnose epilepsy and to administer the right treatment to the patient.

The electroencephalogram (EEG) records brain activity from the scalp and can be used to diagnose epilepsy. Quantitative analysis of EEG characteristics can be helpful to diagnose the condition. Magnetic resonance imaging (MRI) is another modality useful in the diagnosis of epilepsy. Currently, EEG is the preferred data type employed for epilepsy diagnosis due to its low cost.

Focal epilepsy is a form of the condition that occurs in certain brain areas [3]. The focal (F) EEG signals are acquired from this region, where the first ictal EEG changes are observed. Non-focal (NF) EEG signals are obtained from brain regions that do not contribute to seizure onset. Both F and NF EEG signals lack seizure segments [3]. It is reported that greater than 20% of patients are affected by generalized epilepsy which manifest from the entire brain, while more than 60% of patients suffer from focal (partial) epilepsy, localized to a smaller region of the brain [3]. It is difficult to treat patients with focal epilepsy by medication alone [3]; hence the need to localize the epileptic zone. Thus, detection and discernment of F and NF signals is an important aspect of quantitative research in this field, as the localization of epileptogenic regions is crucial for successful epilepsy surgery. Since treatment of focal epilepsy often involves removal of the affected brain area surgically [4], it is crucial to discern F EEG signals and their origin.

Substantial research work has been done thus far to characterize F versus NF signals. Typically, F EEG signal morphology is characterized by more rhythmic and less chaotic behavior as compared to NF EEG signals [5]. However, it is challenging to identify the EEG signals visually, due to the presence of low amplitude and random components. Thus, computer-aided detection (CAD) systems have been proposed to develop an automated tool for aid in the identification of EEG characteristics. Several have thus far been conducted, summarized in Table 2. Sharma et al. [6] decomposed EEG signals with an empirical mode decomposition (EMD) technique and extracted entropy features. Their group found an accuracy for EEG classification of 87%. In their subsequent work, they analyzed the signals using the discrete wavelet transform (DWT), and extracted entropy features from the decomposed signals [7]. This approach yielded an accuracy of 84%. In their latest study, they utilized the tunable-Q wavelet transform (TQWT) prior to extraction of entropy features. This novel decomposition technique achieved a diagnostic accuracy of 95% [8].

Devisagamanietal.[9]proposedadual-treecomplexwavelet transform (DTCWT) method to decompose EEG signals and obtained mean and standard deviation (SD) values from the decomposed coefficients. They reported a sensitivity of 98% and specificity of 100% in classifying the signals into F and NF classes. Das et al. [10] combined two decomposition methods, namely the EMD and DWT, and applied these methods to the data. Entropy features were once again extracted and were then classified with an accuracy of 89%. Sharma et al. [11] employed a wavelet filter bank and an entropy feature extraction algorithm to separate NF from F EEG signals. The method accuracy was 94%.

Gupta et al. [12] applied the flexible analytic wavelet transform (FAWT) and subjected the signals to a maximum of 15 levels of decomposition. They then extracted entropy features from the coefficients and characterized them into two classes. They obtained a sensitivity and specificity of 93% and 96%, respectively. Bhattacharriya et al. [13] employed TQWT for decomposition and extracted entropy features from the EEG data to achieve an accuracy of 85%. In their subsequent study, Bhattacharriya et al. [14] proposed to decompose the EEG signals into rhythms using the empirical wavelet transform (EWT), and subjected these rhythms to a reconstructed phase space (RPS) analysis to distinguish between F and NF signals. Their novel algorithm yielded a sensitivity and specificity of 88% and 92%, respectively. Sriraam et al. [15] investigated the capabilities of multi-features in the differentiation of NF and F signals. They adopted statistical, frequency-based, and nonlinear feature extractors. It was reported that the integration of different features could localize the epileptogenic areas of the brain with an accuracy of 92%. Arunkumar et al. [16] extracted several entropy features, and subjected these features to a non-nested generalized exemplars classifier. Their methodology achieved an accuracy level of 98%.

It can be noted from Table 2 that nonlinear features are commonly employed for epilepsy analysis. The motivation of our study is to evaluate the performances of the nonlinear features utilized in the CAD algorithm. The entire database is employed to extract widely used nonlinear features. These nonlinear features have shown clear separation between the two groups. Also, unique recurrence, bispectrum and cumulant plots are used for class separation. Moreover, the challenges associated with the CAD system, and future developments, are discussed.

2. Data types used for analysis

The EEG signals discussed herein were obtained from the publicly available Bern-Barcelona EEG database [5]. They were collected at the Department of Neurology of the University of Bern from five patients suffering from epilepsy. The patients underwent long-term intracranial EEG recording with intracranial strip and depth electrodes. All patients had been diagnosed with longstanding pharmacoresistant temporal lobe epilepsy.

A total of 3750 F EEG signals and 3750 NF EEG signals were used in this study (N = 10,240 samples per signal). The database consists of bivariate EEG signals in the X and Y time series. Fig. 1 shows an example of F and NF EEG signals in the X-series, Y-series and X-Y series respectively.
3. Computer-Aided detection system

The CAD system is employed to investigate the effectiveness of the various feature extraction techniques in the detection of NF and F EEG signals. Fig. 2 is a typical block diagram of the development of a CAD system. It encompasses the input of NF and F EEG signals followed by the pre-processing of the signals. Thereafter, several feature extraction methods are implemented to obtain useful and discriminative characteristics. These features are ranked according to their statistical significance. Lastly, the highest-ranked features are input to the classifier.
The subsequent sections describe the different processes within the CAD systems.

3.1. Pre-processing

Usually, EEG signals are subjected to pre-processing for removal of artifacts and noise prior to feature extraction. However, no pre-processing was performed in this study, as the signals are already pre-processed when downloaded from the database. Nonetheless, we have subjected these signals to a differencing operation to obtain the EEG signals in the X–Y series (see Fig. 1(e) and (f)) before the extraction of features [17].

3.2. Extraction of nonlinear features

In this study, nine nonlinear features were extracted and compared. The use of nonlinear features can be helpful to describe salient properties of EEG signal morphology, which tend to appear complex and chaotic [18]. Extraction of such nonlinear features has been widely implemented to determine the important characteristics of EEG signals [18].

3.2.1. Detrended fluctuation analysis (DFA)

The DFA is often used to detect inherent self-similarity characteristics of the EEG [19]. The variant of the DFA, namely the root mean square (RMS) multi-fractal DFA is implemented together with the DFA feature.

3.2.2. Entropies

The entropy feature is useful to evaluate the uncertainty and irregularity present in EEG signals [20]. In general, the entropy of the EEG signal is higher when the variability and complexity of the EEG signals increases.

The entropy types extracted in this study are the modified multi-scale entropy (MMSE) with ten scales employed [21], sample [22], approximate [23], fuzzy [24], Kolmogorov–Sinai [25], Renyi [26], Shannon [27], bispectrum entropy 1, bispectrum entropy 2, and bispectrum phase entropy [28], Tsallis [29], wavelet [30], and permutation [31].

3.2.3. Fractal dimension (FD)

The fractal dimension or FD metric [32] can be utilized to compare the complexity of details in the EEG. Hence, it enables detection of EEG signal patterns and details that may not be evident visually.

3.2.4. Hjorth

There are three Hjorth parameters, namely the mobility, complexity, and activity, which are used to quantify EEG signal morphology [33].

3.2.5. Hurst exponent

The Hurst exponent [34] is an estimation of predictability and self-similarity in the EEG. A greater magnitude for the Hurst exponent is indicative of a smoother and less complicated EEG signal.

3.2.6. Kolmogorov complexity

This parameter describes the characteristics of the EEG signals [35]. Therefore, the more random the signals are, the longer is the length of the description.

3.2.7. Largest Lyapunov exponent (LLE)

The LLE is computed to obtain an estimate of the degree of chaos present in the signals [36]. Therefore, it is noted that the higher the LLE value, the more complex the signals are.

3.2.8. Lempel–Ziv complexity (LZC)

The LZC [37] is used to measure the repetitiveness of the EEG signals. Hence, the more repetitive the signal, the higher the LZC value.

3.2.9. Recurrence qualitative analysis (RQA)

The RQA measures the number of times of recurrences in order to evaluate the complexity of the EEG signals [38]. The parameters of the RQA include larninarity, transitivity, determinism, trapping time, the entropy of diagonal line lengths, mean diagonal line length, maximal vertical line length, maximal diagonal line length, recurrence time (1st type and 2nd type), recurrence time entropy, and the recurrence rate [38–41].

3.3. Feature ranking

Extracted features can be ranked according to the student t-test, corresponding to the level of statistical significance [42]. In reference to the literature (see Table 2), several other feature ranking techniques, namely the receiver operating characteristic (ROC) approach [42], Bhattacharyya distance [44], Wilcoxon test [45], the Kullback–Leibler distance [43], and the Kruskal–Wallis test [46], may also be used to order extracted features according to level of significance.

3.4. Classification

Classification is the last step in the formation of the CAD system. Based upon the literature (see Table 2), the most commonly used classifier is the least squares-support vector machine (LS-SVM) [47]. However, the adaptive neuro-fuzzy inference system (ANFIS) [48], k-nearest neighbor (KNN) [49], and the non-nested generalized exemplars [50] classifiers are also used. Herein, the LS-SVM classifier using polynomial 3 is implemented in accord with the majority of published work, which uses this classifier. Also, the 10-fold cross-validation strategy is adopted in this study.

4. Results

In this study, nonlinear features were extracted from EEG signals. When 23 features were extracted using the LS-SVM for classification, the maximum accuracy of 87.93% was obtained, with a sensitivity and specificity of 89.97% and 85.89%, respectively. All extracted features are listed in Table 1 in descending order according to statistical significance. It is noted that all 52 F and NF features recorded in the table have a p-value of < 0.01.

According to Table 1, the MMSE is highest ranked. This implies that the MMSE is the most statistically significant as compared to other features. MMSE quantifies the pattern and detects regularity in the EEG signals. It can be noted that most of the entropy features have higher values for NF than for F EEG signals. This is typically caused by the F EEG signals being more periodic and less random. Fig. 3 is a graphical representation of the top ten extracted features. Higher mean values are evident for NF as compared to F EEG signals.

The RQA features in Table 1 reflect higher values in the F class as compared to the NF class. This is because the RQA evaluates the number of patterns and occurrences of spikes and subtle changes in the EEG signals, which are more present in F EEG. Thus, the more rhythmic focal EEG signals result in higher mean RQA parameters, which can be useful to identify concealed signal patterns. Similarly, the DFA features portray higher values in the F class versus NF class, as the DFA parameter detects rhythmic patterns present in the signals.

Figs. 4–6 display the typical recurrence, bispectrum, and cumulative plots of F and NF EEG signals, respectively. The F recurrence
Fig. 2. A typical block diagram of a CAD system.

Fig. 3. The top 10 highly-ranked features extracted from the two classes of EEG signals, with their corresponding mean and SD values.

Fig. 4. A sample of (a) F and (b) NF X-Y difference recurrence plots.
Fig. 5. A sample of (a) F and (b) NF X–Y difference bispectrum plots.

Fig. 6. A sample of (a) F and (b) NF X–Y difference cumulants plots.

plot in Fig. 4 appears more periodic and homogeneous, whereas the NF recurrence plot portrays a more random and inconsistent depiction. In Fig. 5, the two plots are unique, displaying different characteristics. The amplitudes of the F bispectrum are larger, while the NF bispectrum plot reflects the presence of smaller amplitudes. Additionally, the F plot has more consistent peaks as compared to the NF plot. This means that the bispectrum features in the F plot are more periodic and regular. Similarly, the F cumulant plot has higher amplitudes than the NF cumulant plot in Fig. 6.

These figures indicate that the extracted nonlinear features (recurrence, bispectrum, and cumulants) can be efficaciously utilized for classification, and that they provide visually apparent distinctions between the two classes.

5. Discussion

Published CAD system algorithms for automatic detection of F EEG signals are summarized in Table 2. It is evident from the table that most of the systems employed various decomposition techniques prior to the extraction of features. These decomposition approaches include the EMD [51], DWT [52], DT-CWT [53], WFB [54], TQWT [55], FAWT [56], and EWT [57]. Hence, it is noted that a combination of decomposition techniques and nonlinear features have successfully and efficiently been used to characterize F and NF EEG signals.

The entropy feature extraction technique is often used in quantitative epilepsy analysis [6–8,10–13,15,16]. This may be because entropy features are simple to implement, and they can also well quantify abrupt changes in EEG morphology. Therefore, it is used as a feature by many investigators during the development of CAD systems.

Nonetheless, Deivasigamanietal. [9] proposed to calculate the mean and SD of the coefficients obtained from the decomposed EEG signals and separate them into their corresponding classes (F or NF). Also, Bhattacharyya et al. [14], instead of extracting entropy features, have utilized the reconstructed phase space (RPS) with central tendency measure (CTM) to differentiate the two classes of EEG signals.

Overall, it can be noted that all nine nonlinear features extracted are highly discriminative between F and NF classes, even though entropy features performed better in differentiation.

The main highlights of this study are as follows:

i This is the first study to compare the performances of many nonlinear features for F and NF EEG signal quantitative analysis.

ii The nonlinear features are able to recognize subtle patterns present in the EEG signals, and are assistive to characterize them according to their respective classes.

iii We have utilized the entire EEG database in this review.

iv Unique recurrence, bispectrum and cumulant plots are proposed to discriminate the two classes of EEG signals visually.

plot in Fig. 4 appears more periodic and homogeneous, whereas the NF recurrence plot portrays a more random and inconsistent depiction. In Fig. 5, the two plots are unique, displaying different characteristics. The amplitudes of the F bispectrum are larger, while the NF bispectrum plot reflects the presence of smaller amplitudes. Additionally, the F plot has more consistent peaks as compared to the NF plot. This means that the bispectrum features in the F plot are more periodic and regular. Similarly, the F cumulant plot has higher amplitudes than the NF cumulant plot in Fig. 6.

These figures indicate that the extracted nonlinear features (recurrence, bispectrum, and cumulants) can be efficaciously utilized for classification, and that they provide visually apparent distinctions between the two classes.

5. Discussion

Published CAD system algorithms for automatic detection of F EEG signals are summarized in Table 2. It is evident from the table that most of the systems employed various decomposition techniques prior to the extraction of features. These decomposition approaches include the EMD [51], DWT [52], DT-CWT [53], WFB [54], TQWT [55], FAWT [56], and EWT [57]. Hence, it is noted that a combination of decomposition techniques and nonlinear features have successfully and efficiently been used to characterize F and NF EEG signals.

The entropy feature extraction technique is often used in quantitative epilepsy analysis [6–8,10–13,15,16]. This may be because entropy features are simple to implement, and they can also well quantify abrupt changes in EEG morphology. Therefore, it is used as a feature by many investigators during the development of CAD systems.

Nonetheless, Deivasigamanietal. [9] proposed to calculate the mean and SD of the coefficients obtained from the decomposed EEG signals and separate them into their corresponding classes (F or NF). Also, Bhattacharyya et al. [14], instead of extracting entropy features, have utilized the reconstructed phase space (RPS) with central tendency measure (CTM) to differentiate the two classes of EEG signals.

Overall, it can be noted that all nine nonlinear features extracted are highly discriminative between F and NF classes, even though entropy features performed better in differentiation.

The main highlights of this study are as follows:

i This is the first study to compare the performances of many nonlinear features for F and NF EEG signal quantitative analysis.

ii The nonlinear features are able to recognize subtle patterns present in the EEG signals, and are assistive to characterize them according to their respective classes.

iii We have utilized the entire EEG database in this review.

iv Unique recurrence, bispectrum and cumulant plots are proposed to discriminate the two classes of EEG signals visually.
The disadvantages of our findings are:

i Quantitative analysis for epilepsy is computationally intensive. Incorporation of a graphics processing unit would be useful to better handle the level of complexity during analysis of EEG morphology.

ii More subjects are required to validate the CAD system. Currently, the database consists of the data from five subjects.

6. Future development

In future development, the CAD system will be combined with deep learning techniques. Deep learning is a sophisticated machine learning method, inspired by the neural network structure in the human brain. It is an established discipline that is employed in diverse research fields including speech recognition [58], object recognition [59], structural damage detection [60], and for diagnosis using physiological signals [61-65] and medical images [66]. It is noted that deep learning eliminates the need for feature extraction, selection, and classification. The model can self-learn via the training of the data. Therefore, deep learning techniques can be explored to improve the design of CAD systems, and to accurately localize the epileptogenic area of the brain using EEG signals. Additionally, application of a web-based implementation can be integrated with the proposed deep learning CAD system. With a web-based implementation, clinicians can analyze the EEG signals via cloud storage, and diagnoses made would be sent back to the local server almost instantaneously.

Moreover, as part of the future work, the authors propose to incorporate both MRI images and EEG signals to identify the epileptogenic area of the brain. Providing two sources (image and signal) will ensure a more accurate localization of the epileptogenic zone.

Table 1

The mean and SD value of the extracted features, \(p < 0.01 \).

<table>
<thead>
<tr>
<th>No.</th>
<th>Features extracted</th>
<th>MM</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MMSE: E10</td>
<td>0.659 ± 0.128</td>
<td>0.768 ± 0.140</td>
</tr>
<tr>
<td>2</td>
<td>MMSE: E9</td>
<td>0.646 ± 0.130</td>
<td>0.757 ± 0.145</td>
</tr>
<tr>
<td>3</td>
<td>MMSE: E8</td>
<td>0.633 ± 0.133</td>
<td>0.747 ± 0.150</td>
</tr>
<tr>
<td>4</td>
<td>MMSE: E7</td>
<td>0.615 ± 0.135</td>
<td>0.731 ± 0.156</td>
</tr>
<tr>
<td>5</td>
<td>MMSE: E6</td>
<td>0.585 ± 0.135</td>
<td>0.700 ± 0.160</td>
</tr>
<tr>
<td>6</td>
<td>RQA: Laminarity</td>
<td>0.856 ± 0.0973</td>
<td>0.756 ± 0.155</td>
</tr>
<tr>
<td>7</td>
<td>MMSE: E2</td>
<td>0.397 ± 0.124</td>
<td>0.511 ± 0.174</td>
</tr>
<tr>
<td>8</td>
<td>MMSE: E5</td>
<td>0.551 ± 0.135</td>
<td>0.665 ± 0.165</td>
</tr>
<tr>
<td>9</td>
<td>MMSE: E4</td>
<td>0.512 ± 0.135</td>
<td>0.627 ± 0.173</td>
</tr>
<tr>
<td>10</td>
<td>MMSE: E3</td>
<td>0.448 ± 0.129</td>
<td>0.562 ± 0.173</td>
</tr>
<tr>
<td>11</td>
<td>MMSE: E1</td>
<td>0.372 ± 0.118</td>
<td>0.476 ± 0.157</td>
</tr>
<tr>
<td>12</td>
<td>RQA: Determinism</td>
<td>0.742 ± 0.127</td>
<td>0.634 ± 0.166</td>
</tr>
<tr>
<td>13</td>
<td>Sample entropy</td>
<td>0.581 ± 0.0795</td>
<td>0.651 ± 0.111</td>
</tr>
<tr>
<td>14</td>
<td>Approximate entropy</td>
<td>0.591 ± 0.120</td>
<td>0.688 ± 0.157</td>
</tr>
<tr>
<td>15</td>
<td>RQA: Entropy of diagonal line lengths</td>
<td>0.492 ± 0.0903</td>
<td>0.428 ± 0.100</td>
</tr>
<tr>
<td>16</td>
<td>Fuzzy entropy</td>
<td>0.420 ± 0.106</td>
<td>0.508 ± 0.175</td>
</tr>
<tr>
<td>17</td>
<td>DFA</td>
<td>0.772 ± 0.0673</td>
<td>0.728 ± 0.083</td>
</tr>
<tr>
<td>18</td>
<td>RQA: Trapping time</td>
<td>0.275 ± 0.0725</td>
<td>0.237 ± 0.0616</td>
</tr>
<tr>
<td>19</td>
<td>RQA: Mean diagonal line length</td>
<td>0.324 ± 0.0606</td>
<td>0.293 ± 0.0535</td>
</tr>
<tr>
<td>20</td>
<td>RQA: Maximal vertical line length</td>
<td>0.122 ± 0.0781</td>
<td>0.0865 ± 0.0542</td>
</tr>
<tr>
<td>21</td>
<td>RQA: Recurrence time 2nd type</td>
<td>0.273 ± 0.0916</td>
<td>0.224 ± 0.0941</td>
</tr>
<tr>
<td>22</td>
<td>Kolmogorov–Sinai entropy</td>
<td>0.409 ± 0.238</td>
<td>0.298 ± 0.231</td>
</tr>
<tr>
<td>23</td>
<td>RQA: Recurrence time entropy</td>
<td>0.719 ± 0.0579</td>
<td>0.693 ± 0.0564</td>
</tr>
<tr>
<td>24</td>
<td>Hjorth mobility</td>
<td>0.210 ± 0.0776</td>
<td>0.247 ± 0.108</td>
</tr>
<tr>
<td>25</td>
<td>RQA: Transitivty</td>
<td>0.974 ± 0.00170</td>
<td>0.974 ± 0.00130</td>
</tr>
<tr>
<td>26</td>
<td>Renyi entropy</td>
<td>0.783 ± 0.0677</td>
<td>0.761 ± 0.0711</td>
</tr>
<tr>
<td>27</td>
<td>Shannon entropy</td>
<td>0.0709 ± 0.0910</td>
<td>0.0483 ± 0.0466</td>
</tr>
<tr>
<td>28</td>
<td>RQA: Maximal diagonal line length</td>
<td>0.0260 ± 0.0501</td>
<td>0.0149 ± 0.0388</td>
</tr>
<tr>
<td>29</td>
<td>RQA: Recurrence time 1st type</td>
<td>0.869 ± 0.0889</td>
<td>0.884 ± 0.0779</td>
</tr>
<tr>
<td>30</td>
<td>Bispectrum: Entropy 2</td>
<td>0.370 ± 0.107</td>
<td>0.393 ± 0.138</td>
</tr>
<tr>
<td>31</td>
<td>FD</td>
<td>0.635 ± 0.0450</td>
<td>0.545 ± 0.0599</td>
</tr>
<tr>
<td>32</td>
<td>RQA: Recurrence rate</td>
<td>0.322 ± 0.0467</td>
<td>0.325 ± 0.0366</td>
</tr>
<tr>
<td>33</td>
<td>Kolmogorov complexity</td>
<td>1 ± 0</td>
<td>1 ± 0.001</td>
</tr>
<tr>
<td>34</td>
<td>Bispectrum: Entropy 1</td>
<td>0.581 ± 0.0868</td>
<td>0.595 ± 0.114</td>
</tr>
<tr>
<td>35</td>
<td>RMS Multi-Fractal DFA 10</td>
<td>0.0915 ± 0.0869</td>
<td>0.0799 ± 0.0838</td>
</tr>
<tr>
<td>36</td>
<td>RMS Multi-Fractal DFA 6</td>
<td>0.0798 ± 0.0730</td>
<td>0.0701 ± 0.0740</td>
</tr>
<tr>
<td>37</td>
<td>Tsallis entropy</td>
<td>0.0305 ± 0.0523</td>
<td>0.243 ± 0.0433</td>
</tr>
<tr>
<td>38</td>
<td>RMS Multi-Fractal DFA 5</td>
<td>0.0776 ± 0.0728</td>
<td>0.0681 ± 0.0754</td>
</tr>
<tr>
<td>39</td>
<td>Wavelet entropy</td>
<td>0.0245 ± 0.0493</td>
<td>0.0188 ± 0.0396</td>
</tr>
<tr>
<td>40</td>
<td>RMS Multi-Fractal DFA 1</td>
<td>0.0629 ± 0.0567</td>
<td>0.0554 ± 0.0634</td>
</tr>
<tr>
<td>41</td>
<td>RMS Multi-Fractal DFA 3</td>
<td>0.0761 ± 0.0709</td>
<td>0.0673 ± 0.0732</td>
</tr>
<tr>
<td>42</td>
<td>LLE</td>
<td>0.456 ± 0.19</td>
<td>0.479 ± 0.205</td>
</tr>
<tr>
<td>43</td>
<td>RMS Multi-Fractal DFA 2</td>
<td>0.0880 ± 0.0828</td>
<td>0.0779 ± 0.0886</td>
</tr>
<tr>
<td>44</td>
<td>Permutation entropy</td>
<td>0.815 ± 0.0571</td>
<td>0.822 ± 0.059</td>
</tr>
<tr>
<td>45</td>
<td>RMS Multi-Fractal DFA 8</td>
<td>0.0741 ± 0.0711</td>
<td>0.0659 ± 0.0732</td>
</tr>
<tr>
<td>46</td>
<td>Hjorth complexity</td>
<td>0.555 ± 0.0970</td>
<td>0.565 ± 0.0993</td>
</tr>
<tr>
<td>47</td>
<td>RMS Multi-Fractal DFA 7</td>
<td>0.0739 ± 0.0700</td>
<td>0.0662 ± 0.0709</td>
</tr>
<tr>
<td>48</td>
<td>RMS Multi-Fractal DFA 4</td>
<td>0.0800 ± 0.0726</td>
<td>0.0717 ± 0.0815</td>
</tr>
<tr>
<td>49</td>
<td>RMS Multi-Fractal DFA 9</td>
<td>0.0831 ± 0.0733</td>
<td>0.0749 ± 0.0832</td>
</tr>
<tr>
<td>50</td>
<td>Hurst exponent</td>
<td>0.758 ± 0.0653</td>
<td>0.754 ± 0.0845</td>
</tr>
<tr>
<td>51</td>
<td>L2C</td>
<td>0.500 ± 0.091</td>
<td>0.5 ± 0</td>
</tr>
<tr>
<td>52</td>
<td>Bispectrum: Phase entropy</td>
<td>0.971 ± 0.528</td>
<td>0.971 ± 0.530</td>
</tr>
</tbody>
</table>

where EX refers to the different scales (1 to 10) of the MMSE feature.

where RMS Multi-Fractal DFA X refers to the different scales (1 to 10) of the variant DFA feature.
The concept of combining two or more different inputs together for analysis is termed radiomics. It is the extraction of a large feature set to gather further information for diagnosis of specific health conditions [67]. Consequently, the authors plan to implement the CAD system with radiomics methods, whereby different quantitative features are extracted from medical images to identify the epileptogenic zone [67,68].

7. Conclusion

This study contrasts the performance of nine nonlinear features in differentiating two types of EEG signals. It can be seen that these nonlinear features can detect minute changes in the EEG signals of two (NF and F) classes. The developed CAD model has the potential to be deployed in clinical settings, to aid in offering an objective second opinion for detection of NF versus F EEG signals. Also, unique nonlinear plots have been proposed to discriminate the two classes visually.

References

Yuki Hagiwara, B.Eng. is a researcher working in Ngee Ann Polytechnic, Singapore. She completed her B.Eng. (Electrical and Electronics) in Nanyang Technological University of Singapore. In the past year, she has published 39 journal papers. Her main academic interests are artificial intelligence, biomedical imaging, and machine learning. Please see https://www.researchgate.net/profile/Yuki_Hagiwara2 for more details.

Sunny Nitin Deshpande is studying in Ngee Ann Polytechnic, Singapore. His main academic interests are artificial intelligence, and robotics.

S. Suren is studying in Ngee Ann Polytechnic, Singapore. His main academic interests are artificial intelligence, and biomedical engineering.

Joel En Wei Koh, B.Eng. is a researcher working in Ngee Ann Polytechnic, Singapore. He completed his B.Eng. (Biomedical) in SIM University, Singapore. He has published more than 31 journal papers in the past 5 years. His principal interests are in artificial intelligence, biomedical imaging, and machine learning. Please visit https://www.researchgate.net/profile/Joel_En_Wei_Koh for more information.

Shu Lih Oh, B.sc.(Hons.) is a researcher working in Ngee Ann Polytechnic, Singapore. He completed his B.sc. (Biomedical Engineering) in SIM University, Singapore. He has published a total of 25 journal papers in the past 2 years. His principal interests are in machine learning, artificial intelligence and biomedical signal processing. Please visit https://www.researchgate.net/profile/Shu_Lih_Oh for more details.

N. Arunkumar has completed in his BE, ME in Electronics and Communication Engineering with specialization in Biomedical Engineering. He has a strong academic teaching and research experience of more than 11 years in SASTRA University, India. He is appreciated for his innovative research oriented teaching related practical life experiences to the principles of engineering. He is active in research.

Edward J. Ciaccio Ph.D. is Senior Research Scientist in Medicine at Columbia University Medical Center and Honorary Principal Research Fellow at Imperial College London. He received his degrees from Rutgers University, and is Editor-In-Chief of Computers in Biology and Medicine and Informatics in Medicine Unlocked journals.

Choo Min Lim, Ph.D. is a Senior Academic Advisor of the School of Engineering, Ngee Ann Polytechnic. He is a Senior Member of IEEE. His interests include the applications of fuzzy logic and neural networks, and development of animations to support the teaching of multivariable calculus.