

Potsdam Institute for Climate Impact Research

Norbert Marwan

Modern Nonlinear Approaches for Data Analysis

Leibniz Gemeinschaft

Literature

- Kantz, Schreiber: Nonlinear Time Series Analysis, Cambridge University Press
- Sprott: Chaos and time-series analysis, Oxford University Press
- Tong: Non-linear time series, Oxford University Press
- Trauth: Matlab Recipes for Earth Sciences, Springer
- Kruhl: Fractals and Dynamic Systems in Geoscience, Springer
- Middleton, Plotnick, Rubin: Nonlinear Dynamics and Fractals -New Numerical Techniques for Sedimentary Data, SEPM Short Course No. 36

Circulation, Turbulence

Palaeo-climate Proxy Records

Palaeo-climate Proxy Records

Complex Biological Structures

Concepts of Nonlinear Data Analysis

- Fractals, self-similarity & dimensions
- Symbolic dynamics
- Phase space and recurrence analysis
- Complex networks
- Synchronisation & interrelations
- Modes, decompositions, frequences

Fractals and Dimensions

Fractals

Measure the length L with a certain ruler of length ε

$$L = N \cdot \varepsilon$$

 $N \sim arepsilon^{-D}$ Fractal dimension

Cantor Dust

Sierpinsky Gasket/Carpet

Mandelbrodt Fractal

Symbolic Dynamics

Bone Loss in Space

- 2nd important problem after radiation for the manned (long term) spaceflight
- bone loss in space: 1.5% per month

© Courtesy of NASA, 2005

Lost in Space

- Skull: +0.6%
- Arm: +0.1%
- Lumbar spine: -1.07%
- Pelvis: -1.35%
- Greater trochanter: -1.58%
- Femoral neck: -1.16%
- Tibia: -1.25%
- Calcaneus: -1.50%

per month

Reduce Fracture Risk

- monitoring bone alterations during space flights
- exercises
- medical countermeasures

Osteoporosis

- global problem
- more than 50 % of post-menopausal woman
- fractures occur in up to 16 % of the women

Bone Strength

- bone composition
- bone density
- internal bone structure

Diagnosis

Bone Mineral Density (BMD)

Trabecular Bone Structure

- plays important role for bone strength
- changes during development of osteoporosis or in microgravity

Structural Quantification

Histomorphometry

- "gold standard"
- invasive method

Structural Quantification

Symbolic Analysis

• pQCT (peripheral quantitative computer tomography)

- 2 steps:
 - 1. attenuation threshold
 - 2. edge threshold

edge image E

e = a – min. neighbour

- thresholding attenuation values:
 thresholding edge values:
 - 1. Lake: q < T
 - 2. Valley: $T < a \leq \bar{a}$
 - 3. Highland: $\bar{a} < a$

- - <u>1.</u> Incline: $T \leq e \leq 3T$
 - 2. Cliff: 3T < e

osteoporotic

osteopenic

norma

Structural Measures

- Complexity measures based on distribution of symbols L, V, H, I, C
- Structure Disorder Index (SDI): 3D Shannon entropy of {p(L), p(I | C), p(V | H)} disorder of the structure
- Index of Global Ensemble (IGE):

$$IGE = \frac{p(I) + p(C)}{p(L)}$$

measuring the composition of bone

Structural Measures

Extension in 3D

- three symbols
- marrow (blue)
- internal bone (green)
- surface (red)

Structural Measures in 3D

Phase Space and Recurrences

Phase Space

- System: differential equations $\dot{\vec{x}}(t) = \vec{F}(\vec{x}(t)), \quad F: \mathbb{R}^d \to \mathbb{R}^d$
- Trajectory in phase space (dimension d) $ec{x}(t) \in \mathbb{R}^d$
- Example:

temperatur and pressure speed and location (pendulum)

Phase Space Reconstruction

- measurement: only one variable available, or other variables not known
- reconstruction by using time delay embedding:

$$ec{x}(i) = ig(u_i, u_{i+ au}, u_{i+2 au}, \dots, u_{i+(m-1) au} ig)$$
 \uparrow
time delay embedding dimension

Phase Space Reconstruction

Phase Space

- representation of the system's variables
- trajectory represents the dynamics of the system
- many dynamical properties can be derived from the phase space trajectory

Lorenz System

$$\dot{x}_1 = \sigma(x_2 - x_1)$$
$$\dot{x}_2 = \rho x_1 - x_2 - x_1 x_3$$
$$\dot{x}_3 = x_1 x_2 - \beta x_3$$

$$(\sigma = 10, \rho = 28, \beta = 8/3)$$

Lorenz Attractor

Lyapunov Exponent

Lyapunov Exponent

λ = 0 (distortions remain)
instable fixpoint

λ < 0 (distortions exponentially shrink)
 stable fixpoint

 $\lambda > 0$ (distortions exponentially grow) chaos

Correlation Sum

Correlation Sum

Correlation Dimension

fractal dimension (strange attractor)

Logistic Map

$$x_{i+1} = a x_i (1 - x_i)$$

Nonlinear Processes

Nonlinear Processes

Stretching

Nonlinear Processes

Stretching

Folding

Recurrence by a Nonlinear Process

Tent Map

$$x_{i+1} = \begin{cases} 2x_i & x_i < 0.5 \\ 2(1-x_i) & x \ge 0.5 \end{cases}$$

Error Growth in Tent Map

X	2x 2(1-x)	X	2x 2(1-x)	Fehler
0,8	0,4	0,8+0,0001	0,3998	0,0002
0,4	0,8	0,3998	0,7996	0,0004
0,8	0,4	0,7996	0,4008	0,0008
0,4	0,8	0,4008	0,8016	0,0016

exponential error growth (2⁴ after 4 steps)

Recurrence

- fundamental characteristic of many dynamical systems
- recurrences in real life:

Milankovich cycles, weather after storm, El Niño phenomenon, heart beat after exertion, Maya calendar etc.

Recurrence

- Poincaré, 1890
- study of the three-body system (planetary motion)
- "a system recurs infinitely many times as close as one wishes to its initial state"
- won price by King Oscar of Sweden II on the occassion of his 60th birthday

Investigating Recurrence

- Poincaré map
- Recurrence time statistics
- First return map
- Recurrence plot

Recurrence Plot

Recurrence Plot

Recurrence Plot

• to visualise the phase space trajectory by its recurrences

$$\mathbf{R}_{i,j} = \begin{cases} 1 : \vec{x}_i \approx \vec{x}_j \\ 0 : \vec{x}_i \not\approx \vec{x}_j \end{cases} \quad i, j = 1, \dots, N$$

• formal Heaviside function

$$\mathbf{R}_{i,j}(\varepsilon) = \Theta\left(\varepsilon - \left\|\vec{x}_i - \vec{x}_j\right\|\right), \quad i, j = 1, \dots, N$$

J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Europhysics Letters, 5, 1987

Recurrence Plot Typology

homogeneous

periodic

disrupted

Solar Insolation January insolation (44°N)

Milankovich cycles

Heart beat variability

Line Structures in Recurrence Plots

- Single dots
- Diagonal lines
- Vertical lines
- other line-like structures

Line Structures in Recurrence Plots

- Single dots
- Diagonal lines
- Vertical lines
- other line-like structures

Line Structures in Recurrence Plots

- Single dots
- Diagonal lines
- Vertical lines
- other line-like structures

Line Structures in Recurrence Plots

- Single dots
- Diagonal lines
- Vertical lines
- other line-like structures

- quantitative description of RPs
- based on
 - recurrence point density
 - diagonal lines
 - vertical lines

C. L. Webber Jr., J. P. Zbilut, Journal of Applied Physiology, 76, 1994 N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Physical Review E, 66, 2002

Time

• Determinism DET $DET = \frac{\sum_{l=l_{\min}}^{N} l P(l)}{\sum_{l=1}^{N} l P(l)}$

Probability that recurrences further recur

• Laminarity LAM

$$LAM = \frac{\sum_{v=v_{min}}^{N} vP(v)}{\sum_{v=1}^{N} vP(v)}$$

Probability that a certain recurrent state further recurs

- Time dependent analysis:
 - > sliding windows over RP
- Detection of transitions

• Time dependent analysis:

> sliding windows over RP

• Detection of transitions

Dynamics of Oxygen Crises in Lakes

Facchini et al., Ecological Modelling, 203, 2007

Dynamics of Oxygen Crises in Lakes

Time

Facchini et al., Ecological Modelling, 203, 2007

Phase Synchronisation

Probability that system recurs after time τ

Phase Synchronisation

Probability that system recurs after time τ

Phase Synchronisation

• Correlation coefficient

$$CPR = \langle \bar{p}_{\vec{x}}(\tau) \bar{p}_{\vec{y}}(\tau) \rangle$$

• high-dimensional systems, non phase coherent attractors

M. C. Romano, M. Thiel, J. Kurths, I. Z. Kiss, J. Hudson, Europhysics Letters, 71, 2005

Synchronisation Analysis

Fixational Eye Movements

Fixational Eye Movements

Fixational Eye Movements

Rössler oscillator drives Lorenz oscillator

 $\dot{x}_1 = b + x_1(x_2 - c) \qquad \dot{y}_1 = -\sigma(y_1 - y_2)$ $\dot{x}_2 = -x_1 - x_3 \qquad \dot{y}_2 = r u - y_2 - u y_3$ $\dot{x}_3 = x_2 + a x_3 \qquad \dot{y}_3 = u y_2 - b y_3$

where $u = x_1 + x_2 + \overline{x_3}$

• Joint recurrence plot:

$$\mathbf{JR}_{i,j}(x,y) = \mathbf{R}_{i,j}(x) \cdot \mathbf{R}_{i,j}(y)$$

Romano et al., Physical Review E, 76, 2007

- MCR(y | x) < MCR(x | y)
 x drives y
- MCR(x | y) < MCR(y | x)
 → y drives x

weakly coupled, non-identical Lorenz oscillators

Romano et al., Physical Review E, 76, 2007

• Joint recurrences:

promising approach for detection of coupling directions

Recurrence Plot

- Transition detection
- Differentiate dynamics
- Finding time scales
- Interrelation detection
- Synchronisation analysis
- Surrogates
- Recurrence time statistics
- Noise reduction
- Detection of weak frequency changes

Literature

Available online at www.sciencedirect.com

Physics Reports 438 (2007) 237-329

PHYSICS REPORTS

www.elsevier.com/locate/physrep

Recurrence plots for the analysis of complex systems

Norbert Marwan*, M. Carmen Romano, Marco Thiel, Jürgen Kurths

Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany

Accepted 3 November 2006 Available online 12 January 2007 editor: I. Procaccia

Abstract

Recurrence is a fundamental property of dynamical systems, which can be exploited to characterise the system's behaviour in phase space. A powerful tool for their visualisation and analysis called *recurrence plot* was introduced in the late 1980's. This report is a comprehensive overview covering recurrence based methods and their applications with an emphasis on recent developments. After a brief outline of the theory of recurrence, the basic idea of the recurrence plot with its variations is presented. This includes the quantification of recurrence plots, like the recurrence quantification analysis, which is highly effective to detect, e. g., transitions in the dynamics of systems from time series. A main point is how to link recurrences to dynamical invariants and unstable periodic orbits.

How to get

crp
 crp2
 crp big

crqa
crqad
dl

jrp

戸文書

entropy
hist2
histn

Look at the installation notes.

How to contact

Get the contact information on the web site of Norbert Marwan.

Installation

- web site: http://tocsy.agnld.uni-potsdam.de (CRP Toolbox)
- request access data
- download installation file install.m
- call install on the Matlab commandline

Complex Networks

Complex Networks

- spatio-temporal analysis
- different classes of networks (random, scale-free, small world, regular, modular)
- identification of hubs, stability, clusters, selforganisation

Complex Networks

- Successful applications in many fields
 - social networks
 - brain dynamics
 - power grids
 - metabolic networks etc.

importance of vertex for network

Network Properties

topology of the network (small-world)

Network Properties

impact of vertex for information, energy, or matter flow

Betweenness Centrality

- number of shortest paths through a given vertex
- physics: energy transport on shortest ways
- changes on a vertex of high betweenness: impact on large parts of the network

Network Construction

- Edges: (non)linear correlations between vertices
 - Pearson correlation coefficient
 - mutual information
 - lag correlation
- statistically significant links
- unweighted, undirected network

Data

- NCEP/NCAR reanalysis data
- air temperature (17 levels)
- 1/1948 12/2007
 (720 samples)
- grid resolution 2.5° × 2.5°
 (10,224 vertices)

Surface Level

highly linked regions (hubs)

Donges et al., Europhys. Lett. 87, 48007 (2009)

Surface Level

energy (heat) transport ways

Donges et al., Europhys. Lett. 87, 48007 (2009)

Surface Level

Evolving Networks

J. Runge, A. Radebach, J. Zscheischler

stability of the climate network during El Niño

Evolving Networks

J. Runge, A. Radebach, J. Zscheischler

stability of the climate network during El Niño

Evolving Networks

Evolving Climate Network (5 deg grid, threshold 4.5)

Betweenness Centrality: height

Degree Centrality:

500 1350 2200

Mar 1997 400

stability of the climate network during El Niño

Software for Complex Networks

- iGraph (interfaces to C, R, Python) http://igraph.sourceforge.net/
- Network Workbench http://nwb.slis.indiana.edu/
- pyRecurrence http://www.pik-potsdam.de/members/donges/software

Modern Nonlinear Approaches for Data Analysis

Typical Behaviour of Nonlinear Systems

- fractal dimension
- self-similarity
- exponential error growth, non-predictable
- recurrence

