193.174.19.232Abstract: S. Hosni, S. Borgheai, J. McLinden, S. Zhu, X. Huang, S. Ostadabbas, Y. Shahriari (2021)

Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2021), 2021, 6453–6457p. (2021) DOI:10.1109/EMBC46164.2021.9630068

Graph-based Recurrence Quantification Analysis of EEG Spectral Dynamics for Motor Imagery-based BCIs

S. Hosni, S. Borgheai, J. McLinden, S. Zhu, X. Huang, S. Ostadabbas, Y. Shahriari

Despite continuous research, communication approaches based on brain-computer interfaces (BCIs) are not yet an efficient and reliable means that severely disabled patients can rely on. To date, most motor imagery (MI)-based BCI systems use conventional spectral analysis methods to extract discriminative features and classify the associated electroencephalogram (EEG)-based sensorimotor rhythms (SMR) dynamics that results in relatively low performance. In this study, we investigated the feasibility of using recurrence quantification analysis (RQA) and complex network theory graph-based feature extraction methods as a novel way to improve MI-BCIs performance. Rooted in chaos theory, these features explore the nonlinear dynamics underlying the MI neural responses as a new informative dimension in classifying MI. METHOD: EEG time series recorded from six healthy participants performing MI-Rest tasks were projected into multidimensional phase space trajectories in order to construct the corresponding recurrence plots (RPs). Eight nonlinear graph-based RQA features were extracted from the RPs then compared to the classical spectral features through a 5-fold nested cross-validation procedure for parameter optimization using a linear support vector machine (SVM) classifier. RESULTS: Nonlinear graph-based RQA features were able to improve the average performance of MI-BCI by 5.8% as compared to the classical features. SIGNIFICANCE: These findings suggest that RQA and complex network analysis could represent new informative dimensions for nonlinear characteristics of EEG signals in order to enhance the MI-BCI performance.

back


Creative Commons License © 2024 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.